艇后大侧斜螺旋桨负载噪声数值分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Analysis of Load-noise of a Highly-skewed Propeller behind Submarine
  • 作者:张明宇 ; 林瑞霖 ; 王永生 ; 付建 ; 魏应三
  • 英文作者:ZHANG Ming-yu;LIN Rui-lin;WANG Yong-sheng;FU Jian;WEI Ying-san;College of Marine Power Engineering,Naval University of Engineering;
  • 关键词:潜艇 ; 大侧斜螺旋桨 ; 计算流体力学 ; 边界元法 ; 扇声源理论
  • 英文关键词:submarine;;highly-skewed propeller;;CFD;;BEM;;Acoustic Fan Source
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:海军工程大学动力工程学院;
  • 出版日期:2016-09-15
  • 出版单位:船舶力学
  • 年:2016
  • 期:v.20;No.155
  • 基金:Supported by National Nature Science Foundation of China(51009144)
  • 语种:英文;
  • 页:CBLX201609010
  • 页数:11
  • CN:09
  • ISSN:32-1468/U
  • 分类号:122-132
摘要
为研究艇后非均匀流场中大侧斜螺旋桨无空泡负载噪声的分布规律,文章采用"CFD+BEM"法,以SUBOFF潜艇后某大侧斜桨为研究对象,首先稳态计算均匀进流下螺旋桨敞水特性,模拟系数值与实验误差在3%以内,验证了CFD数值计算的可信性。然后采用大涡(LES)模拟,对"艇+桨"进行三维非定常数值模拟,计算得到桨表面声偶极子数据后,通过距离加权平均法映射到声网格节点上,将噪声源直接分布在桨叶表面上进行积分来预报螺旋桨的低频线谱噪声。采用边界元法基于扇声源理论通过FW-H声类比方程分别在1 k Hz以内对桨盘面、轴向纵剖面及10倍桨半径球场的噪声进行频域求解。研究表明:桨盘面和轴向纵剖面上声指向均呈8字形,但受螺旋桨自身旋转及大侧斜的存在,指向性不唯一;球场声场显示,轴向声辐射面较大,声辐射强,径向辐射面小且辐射较弱;特征点的计算结果显示,高阶叶频声压级明显比一阶叶频低,这与物理现象相符,将特征点处结果与已发表文献进行对比,吻合性良好,并对存在的差异作出了合理的物理解释。该文为螺旋桨噪声预报介绍了一种可行的新方法。
        This investigation combined the Computational Fluid Dynamics(CFD) with Boundary Element Method(BEM) to predict the load noise of a highly-skewed propellers behind submarine(SUBOFF) with full appendages.The credibility of CFD was validated by comparing the results derived from steady simulation of the open water propeller with experiment data.The unsteady loading(dipole sound source) on blade surface was calculated by transient simulation of the same propeller fixed after submarine and then was transferred to the sound grid.The integration of the noise source was performed over the true blade surface,which was used to predict the propeller's low-order blade frequency noise below 1 kH z.The BEM method was used to solve the FW-H equation to get the sound pressure directivity characteristics on the 3D spherical surface enclosed the propeller as well as two planes in the surface of the propeller disc and its perpendicular surface based on theory of acoustic fan source,total sound pressure level on the downstream axial measured points were also calculated.Study shows that the sound pressure directivity on both the propeller disc and its perpendicular plane presented as ‘8',but the directivity is not unique because of the existence of rotation and skew angle of the propeller.The 3D spherical field showed that the radiant surface in the direction of the propeller disc was smaller and radiated weaker than its perpendicular plane.The results of the typical points showed that the 1st order blade frequency SPL exceeded the high-order blade frequency SPL obviously,which accorded well with fact.A good consistency had gotten after comparing with the published literature and reasonable explanation was also given to the difference.Thus,this paper introduced a new method to measure the propeller noise behind submarine in the ship effectively.
引文
[1]Zhong Xiaonan.Propeller noise of vessel[M].Shanghai:Shanghai Jiao Tong University Press,2011:23-27.
    [2]Seol H,Jung B,Suh J C.Prediction of non-cavitation underwater propeller noise[J].Journal of Sound and Vibration 2002,257(1):131-156.
    [3]Seol H,Suh J C,Lee S.Development of hybrid method for the prediction of underwater propeller noise[J].Journal of Sound and Vibration,2005,288:345-360.
    [4]Zhu Xiqing,Tang Denghai,Sun Hongxing.Study of The low-frequency propeller noise[J].Journal of Ship Mechanics,2000,4(1):50-55.
    [5]Zhu Xiqing,Wu Wusheng.Prediction of marine propeller loading noise[J].Acta Acustic,1999,24(3):259-268.
    [6]Pantle I,Magagnato F,Gabi M.Numerical noise prediction in fluid machinery[J].Journal of Thermal Science,2005,14(3):230-235.
    [7]Kato C,Yamade Y,Wang H.Numerical prediction of sound generated from flows with a low mach number[J].Computers&Fluids,2007,36:53-68.
    [8]Wang M,Freund J B,Lele S K.Computation prediction of flow-generated sound[R].New York:Annual Review of Fluid Mech,2006,38:483-512.
    [9]Yang Qiongfang,Wang Yongsheng,Zeng Wende.Calculation of highly-skewed propeller’s load noise using BEM numerical acoustics method in frequency domain[J].Acta Armamentarll,2011,32(9):1118-1125.
    [10]Ffowcs W J E,Hawkinns D L.Sound generation by turbulence and surfaces in arbitrary motion[C]//Proc.Rov.Soc.London:Roy.Soc.1969,264A:321-342.
    [11]ANSYS CFX User’s Guide.Aerodynamic noise analysis[K].ANSYS Inc,2006.
    [12]Jin Shuanbao,Wang yongsheng,Yang Qiongfang.Integrative design of waterjet axial pump based on numerical experimentation[J].Shipbuilding of China,2010,51(3):39-45.
    [13]Shi Weidong,Yao Jie,Zhang Desheng.Influence of sampling frequency and time on pressure fluctuation characteristics of axial-flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(3):190-195.
    [14]Ye Jinming,Xiong Ying,Gao Xiaopeng.Prediction method of low-order blade frequency noise of non-cavitation propeller in time domain[J].Journal of Harbin Engineering University,2013,34(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700