计量型扫描电子显微镜成像的微纳米级振动
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micro-nanometer scale vibration in imaging of metrological scanning electron microscope
  • 作者:杜晨辉 ; 龚亮 ; 蔡小勇 ; 殷伯华 ; 江潮 ; 安立宝
  • 英文作者:DU Chen-hui;GONG Liang;CAI Xiao-yong;YIN Bo-hua;JIANG Chao;AN Li-bao;College of Mechanical Engineering,North China University of Science and Technology;CAS Key Laboratory of Standardization and Measurement for Nanotechnology,National Center for Nanoscience and Technology,Chinese Academy of Sciences;Beijing Key Laboratory of Bioelectromagnetism,Institute of Electrical Engineering,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:计量型扫描电子显微镜 ; 微位移台 ; 振动 ; 耦合位移 ; 有限元分析
  • 英文关键词:metrological scanning electron microscope;;micro-displacement platform;;vibration;;coupling displacement;;finite element analysis
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:华北理工大学机械工程学院;中国科学院国家纳米科学中心中国科学院纳米标准与检测重点实验室;中国科学院电工研究所北京市生物电磁学重点实验室;中国科学院大学;
  • 出版日期:2019-04-15
  • 出版单位:光学精密工程
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金资助项目(No.51472074);; 河北省引进海外高层次人才“百人计划”资助项目(No.E2012100005);; 国家重点研发计划课题(No.2017YFF0105904)
  • 语种:中文;
  • 页:GXJM201904013
  • 页数:8
  • CN:04
  • ISSN:22-1198/TH
  • 分类号:127-134
摘要
为提高计量型扫描电镜位移系统的稳定性及测量精度,对位移系统中的机械位移台进行仿真分析,获取相关振动参数。依据机械位移台工况建立模型,运用有限元方法对它进行静力及模态分析,获取机械位移台系统结构的振动参数;在模态分析的基础上对机械位移台进行谐响应分析,获取外界载荷频率与位移台上平面应力、应变、变形以及加速度之间的关系。机械位移台的静刚度为6.634×10~5 N/mm;水平X,Z两运动方向的耦合比分别为15.22%和17.63%;通过上层平面振动参数关于频率的响应曲线,得出危险频率为7 750Hz左右,即第8阶固有模态下的频率。X,Z两运动方向耦合较为明显,在对机械位移台进一步改进中,避开危险频率的同时,需对其进行位移补偿。
        To improve the stability and measurement accuracy of the positioning system of a metrological scanning electron microscope,the mechanical displacement platform in the positioning system was simulated and analyzed,and vibration parameter values were obtained.A model of the mechanical displacement platform was established according to its working conditions,and the structural vibration parameter values of the platform were acquired by conducting static and modal analysis using the finite element method.Through the modal analysis,the harmonic response of the mechanical displacement platform was analyzed,and the relationships between the external load frequency and stress,strain,deformation,and the acceleration of the upper plane of the platform were obtained.The static stiffness of the mechanical displacement platform is 6.634×10~5 N/mm,and the coupling ratios of the horizontal X and Z movements are 15.22% and 17.63%,respectively.According to the response curve of the upper plane vibration parameter to the frequency,the dangerous frequency is approximately 7 750 Hz(i.e.,the frequency under the eighth natural mode).In addition,a strong coupling is observed between the Xand Z movements.For a modified design of the platform,displacement compensation should be conducted while ensuring the platform is prevented from reaching the dangerous frequency.
引文
[1]LI W,GAO S T,LU M Z,et al..Position measuring system in metrological atomic force microscope[J].Opt.Precision Eng.,2012,20(4):796-802.
    [2]SCIRE F E,TEAGUE E C.Piezodriven 50-microm range stage with subnanometer resolution[J].Review of Scientific Instruments,1978,49(12):1735-1740.
    [3]FU J,YOUNG R D,VORBURGER T V.Longrange scanning for scanning tunneling microscopy[J].Review of Scientific Instruments,1992,63(4):2200-2205.
    [4]LEANG K K,FLEMING A J.High-speed serialkinematic SPM scanner:design and drive considerations[J].Asian Journal of Control,2010,11(2):144-153.
    [5]POLIT S,DONG J.Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing[J].IEEE-ASME Transactions on Mechatronics,2011,16(4):724-733.
    [6]ANDO T,UCHIHASHI T,KODERA N,et al..High-speed AFM and nano-visualization of biomolecular processes[J].Pflugers Archiv-European Journal of Physiology,2008,456(1):211-225.
    [7]MELI F,KLEIN T,BUHR E,et al..Traceable size determination of nanoparticles,a comparison among European metrology institutes[J].Measurement Science and Technology,2012,23(12):125005-125015.
    [8]FRASE C G,BUHR E,DIRSCHERL K.CD characterization of nanostructures in SEM metrology[J].Measurement Science and Technology,2007,18(2):510-519.
    [9]LI C X,GU G Y,YANG M J,et al..Design,analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage[J].Review of Scientific Instruments,2013,84(12):125111.
    [10]施宁平,凌宁.六维宏微位移可控精密工作台的研制[J].光电工程,2005,32(3):82-84.SHI N P,LING N.Development of a 6-D macromicro-displacement controllable precision operating stage[J].Opto-Electronic Engineering,2005,32(3):82-84.(in Chinese)
    [11]林超,陶友淘,程凯,等.微/纳传动平台的位移耦合分析[J].浙江大学学报:工学版,2013,47(4):720-727.LIN CH,TAO Y T,CHENG K,et al..Displacement coupling analysis of micro/nano transmission platform[J].Journal of Zhejiang University:Engineering Science,2013,47(4):720-727.(in Chinese)
    [12]刘俊标,殷伯华,文良栋,等.压电直线电机驱动的精密工件台研制及应用[J].振动、测试与诊断,2013,33(S2):52-54.LIU J B,YIN B H,WEN L D,et al..Precision stage driven by piezoelectric linear motor and its application[J].Vibration Test and Diagnosis,2013,33(S2):52-54.(in Chinese)
    [13]李俊帅,马春生,李瑞琴,等.2-UPR-SPR并联机构的刚度与谐响应分析[J].包装工程,2017,38(9):173-177.LI J SH,MA CH SH,LI R Q,et al..Stiffness and harmonic response of 2-UPR-SPR parallel mechanism[J].Packaging Engineering,2017,38(9):173-177.(in Chinese)
    [14]闫鹏,张立龙,刘鹏博.具有耦合补偿功能的大行程二维柔性平台[J].光学精密工程,2016,24(4):804-811.YAN P,ZHANG L L,LIU P B.Flexure-based XY micro-positioningstage with large stroke and coupling compensation[J].Opt.Precision Eng.,2016,24(4):804-811.(in Chinese)
    [15]LI Y M,XU Q S.Development and assessment of a novel decoupled XY parallel micropositioning platform[J].IEEE-ASME Transactions on Mechatronics,2009,15(1):125-135.
    [16]齐克奇,向阳,丁亚林,等.并联自解耦二自由度微位移平台的研制与测量[J].光学精密工程,2017,25(7):1874-1881.QI K Q,XIANG Y,DING Y L,et al..Development and measurement of a parallel-type self-decoupling 2-dimension micro-motion stage[J].Opt.Precision Eng.,2017,25(7):1874-1881.(in Chinese)
    [17]于保敏,黄站立.基于有限单元法的热风阀阀体模态和谐响应分析[J].机械设计与制造,2005(9):107-108.YU B M,HUANG ZH L.Modality and harmonic response analysis of hot breeze valve body based on finite element method[J].Machinery Design&Manufacture,2005(9):107-108.(in Chinese)
    [18]李淑娴,吴一辉,宣明.电磁式微流体动态混合器的动力学数值模拟[J].光学精密工程,2005,13(2):127-134.LI SH X,WU Y H,XUAN M.Dynamic numerical simulation of a electromagnetic microfluidic active mixer[J].Opt.Precision Eng.,2005,13(2):127-134.(in Chinese)
    [19]谢健,吉卫喜,宋丽娟,等.ZC1蜗杆的模态分析[J].现代制造工程,2017(10):78-84.XIE J,JI W X,SONG L J,et al..Modal analysis and modal experiment of ZC1worm[J].Modern Manufacturing Engineering,2017(10):78-84.(in Chinese)
    [20]叶志雄,江胜学.基于谐响应分析的设备基础设计方案优化[J].城市轨道交通研究,2017,20(10):125-129.YE ZH X,JIANG SH X.Design optimization of equipment foundation based on harmonic response analysis[J].Urban Mass Transit,2017,20(10):125-129.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700