大气硝酸盐中氧同位素异常研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxygen isotope anomaly (Δ~(17)O) in atmospheric nitrate: A review
  • 作者:张雯淇 ; 章炎麟
  • 英文作者:Wenqi Zhang;Yanlin Zhang;Yale-NUIST Center on Atmospheric Environment,International Joint Laboratory on Climate and Environment Change (ILCEC),Nanjing University of Information Science & Technology;Jiangsu Provincial Key Laboratory of Agricultural Meteorology,College of Applied Meteorology,Nanjing University of Information Science & Technology;
  • 关键词:大气硝酸盐 ; 氧同位素异常(Δ~(17)O) ; 硝酸盐生成途径 ; 非质量同位素分馏 ; 大气化学模型
  • 英文关键词:atmospheric nitrate;;oxygen isotope anomaly(Δ~(17)O);;nitrate formation pathways;;mass independent fractionation;;atmospheric chemistry model
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:南京信息工程大学气候与环境变化国际联合实验室耶鲁-南京信息工程大学大气环境中心;南京信息工程大学应用气象学院江苏省农业气象重点实验室;
  • 出版日期:2019-02-21 15:55
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划(2017YFC0212704,2017YFC0210101);; 国家自然科学基金(91644103,41761144056,41603104);; 江苏省自然科学杰出青年基金(BK20180040)资助
  • 语种:中文;
  • 页:KXTB201907003
  • 页数:14
  • CN:07
  • ISSN:11-1784/N
  • 分类号:23-36
摘要
硝酸盐是大气中的主要污染物,其前体物NO_x(NO+NO_2)参与大气中多种光化学反应,可以改变大气氧化特性,有利于细颗粒物的形成,影响气候系统与人类健康.硝酸盐氧同位素异常(Δ~(17)NO_3~-)是解析大气硝酸盐生成途径的有力手段.本文对大气硝酸盐氧同位素异常的研究进展进行了综述.首先列举了测试大气硝酸盐三氧同位素(~(16)O, ~(17)O和~(18)O)的前处理方法(热解法、细菌法和化学法),并对比了全球范围内大气硝酸盐氧同位素异常的时空分布特征.其次总结了大气中硝酸盐生成的主要途径及其氧同位素质量守恒,讨论了大气硝酸盐中氧原子的可能来源及其氧同位素异常值,评估了全球及典型区域尺度上氧同位素异常的模型.最后对大气硝酸盐氧同位素异常的未来研究方向进行了展望.
        The nitrate is a significant component in atmospheric aerosol and has a great impact on the atmospheric chemistry, fine particulate formation, radiative balance and human health. The oxygen isotope anomaly(Δ~(17)O) is quantified as Δ~(17)O= δ ~(17)O-0.52×δ ~(18)O and it represents the enrichment in ~(17)O relative to ~(18)O over the expected relationship(δ ~(17)O~0.5×δ ~(18)O) in mass dependent fractionation processes. The Δ~(17)O values in atmospheric nitrate(Δ17 NO_3~-) depend on the mixing of oxygen sources(e.g. O_3, H_2O and O_2) when NOx is photochemically converted into nitrate. In that case, the observation of Δ17 NO_3~- coupled with photochemical modeling can be used to quantify the relative contribution of each pathway. Here, the recent research progresses of oxygen isotope anomaly of atmospheric nitrate are reviewed. Firstly, the preparation of the triple oxygen isotope(16 O, ~(17)O, ~(18)O) measurement of atmospheric nitrate are compared:(1) The precision of the pyrolysis technique is high(±0.3‰), but this method requires relatively large amount of nitrate(>50 μmol NO_3~-) and complicated preparations.(2) The size and purification limitations are largely overcomed by the denitrification method conducted with Pseudomonas aureofaciens bacteria. It is suitable for isotopic analysis of nanomolar amounts of nitrate with a precision in Δ~(17)O of ±0.6‰.(3) The reduction-azide technique also has the advantage of high precision(±0.2‰), low detection limit and sample preparation. But the utility of toxic substances(cadmium and azide) are unavoidable in the reduction. Secondly, the global characterization of Δ17 NO_3~- are compared. Δ17 NO_3~- tends to be higher in high latitudes than in mid-latitudes, whereas Δ17 NO_3~- in cold seasons are higher than that in warm seasons. Thirdly, the possible formation pathways of atmospheric nitrate are summarized. NO can be converted to NO_2 by O_3 or HO_2/RO_2 in NOx cycle, and then oxidized into nitrate via NO_2~+·OH, NO_3~+ HC/DMS or N2 O5 hydrolysis. Reactive halogen(e.g. BrO) and HNO_4 photolysis can also play an important role in nitrate formation in polar regions. Nitrate oxidized by ·OH have lower Δ~(17)O values, and higher Δ17 NO_3~-normally suggests more O_3 oxidation. Fourthly, the Δ~(17)O values of oxygen sources that contribute to nitrate are introduced. Among all the oxygen sources(O_3, ·OH, HO_2/RO_2, O_2 and tropospheric water), only the Δ~(17)O of ozone is exhibited with high value(25‰–37‰), other compounds are considered to have Δ~(17)O ~0‰. Therefore, the Δ17 NO_3~-from each pathway can be presented based on these values. Next, the photochemical box model and other atmospheric chemical models simulating the Δ17 NO_3~- on regional and global scale are summarized. The photochemical box model is limited for not considering the transport of atmospheric nitrate from neighboring regions. The 3-D model is more advanced than the box model for including vertical and horizontal transport, and incorporating spatial variations in surface fluxes of important primary pollutants such as NOx and VOCs. Finally, the future directions and the application of the researches on Δ17 NO_3~- in the field of atmospheric chemistry are proposed:(1) The target areas of Δ17 NO_3~- observation should be expanded to cover more different regions such as polluted urban and rural areas.(2) More studies are in need for decreasing the uncertainties in the simulation of Δ17 NO_3~-.(3) The nitrate formation mechanism under different atmospheric conditions in various regions still needs to be better understood.(4) The study of oxygen isotope anomaly should be coupled with other approaches in atmospheric research(e.g. air quality modeling and online observation of chemical composition in atmospheric aerosols).
引文
1 Wang N F, Chen Y, Hao Q J, et al. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou(in Chinese). Environ Sci,2016, 37:4482-4489[王念飞,陈阳,郝庆菊,等.苏州市PM_(2.5)中水溶性离子的季节变化及来源分析.环境科学,2016, 37:4482-4489]
    2 Fan M Y, Cao F, Zhang Y Y, et al. Characteristics and source of water soluble inorganic ions in fine particulate matter during winter in Xuzhou(in Chinese). Environ Sci,2017, 38:4478-4485[范美益,曹芳,张园园,等.徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析.环境科学,2017, 38:4478-4485]
    3 Lamsal L N, Martin R V, Padmanabhan A, et al. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett, 2011, 38:185-193
    4 Williams E J, Hutchinson G L, Fehsenfeld F C. NO, and N20 emissions from soil. Glob Biogeochem Cy, 1992, 6:351-388
    5 Kato N, Akimoto H. Anthropogenic emissions of SO_2 and NO, in Asia:Emission inventories. Atmos Environ Part A General Topics,1992, 26:2997-3017
    6 Han H,Bai M D, Bai X Y. Prospect of SO_2 and NO_x removal technology(in Chinese). Res Environ Sci,2002,15:55-57[韩慧,白敏冬,白希尧.脱硫脱硝技术展望.环境科学研究,2002, 15:55-57]
    7 Xu H, Zhang X Y, Bi X H, et al. Spatial and seasonal distribution characteristics of sulfate and nitrate in PM_(2.5)of China(in Chinese).Acta Sci Nat Univ Nank,2013, 6:32-40[徐虹,张晓勇,毕晓辉,等.中国PM_(2.5)中水溶性硫酸盐和硝酸盐的时空变化特征.南开大学学报(自然科学版),2013, 6:32-40]
    8 Pathak R K, Wang T, Wu W S. Nighttime enhancement of PM2 5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai:Plausible contributions of heterogeneous hydrolysis of N_2O_5 and HNO3 partitioning. Atmos Environ, 2011, 45:1183-1191
    9 Miller M F. Isotopic fractionation and the quantification of~(17)O anomalies in the oxygen three-isotope system:An appraisal and geochemical significance. Geochim Cosmochim Acta, 2002, 66:1881-1889
    10 Meijer H A J, Li W J. The use of electrolysis for accurate △~(17)O andδ~(18)O isotope measurements in water. Isot Environ Healt Stud, 1998,34:349-369
    11 Luz B, Barkan E. The isotopic ratios~(17)O/~(16)O and~(18)O/~(16)O in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta, 2005, 69:1099-1110
    12 Michalski G, Xu F. Isotope modeling of nitric acid formation in the atmosphere using ISO-RACM:Testing the importance of NO oxidation, heterogeneous reactions, and trace gas chemistry. Atmos Chem Phys Discuss, 2010, 10:6829-6869
    13 Michalski G, Scott Z, Kabiling M, et al. First measurements and modeling of △~(17)O in atmospheric nitrate. Geophys Res Lett, 2003, 30:3-6
    14 Kaiser J, Hastings M G, Houlton B Z, et al. Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N20. Anal Chem, 2007, 79:599-607
    15 Morin S, Savarino J, Frey M M, et al. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic ocean boundary layer from 65°S to 79°N. J Geophys Res-Atmos, 2009, 114:D05303
    16 Patris N, Cliff S S, Quinn P K, et al. Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2:Determination of different formation pathways as a function of particle size. J Geophys Res-Atmos, 2007, 112:D23301
    17 Johnston J C, Thiemens M H. The isotopic composition of tropospheric ozone in three environments. J Geophys Res-Atmos, 1997, 102:25395-25404
    18 Krankowsky D, Bartecki F, Klees G G, et al. Measurement of heavy isotope enrichment in tropospheric ozone. Geophys Res Lett, 1995,22:1713-1716
    19 Michalski G, Savarino J, Bohlke J K, et al. Determination of thetotal oxygen isotopic composition of nitrate and the calibration of a△17O nitrate reference material. Anal Chem, 2002, 74:4989-4993
    20 Casciotti K L, Sigman D M, Hastings M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem, 2002, 74:4905-4912
    21 Cliff S S, Thiemens M H. High-precision isotopic determination of the ~(18)O/~(16)O and ~(17)O/~(16)O ratios in nitrous oxide. Anal Chem, 1994, 66:2791-2793
    22 Kunasek S A, Alexander B, Steig E J, et al. Measurements and modeling of △~(17)O of nitrate in snowpits from Summit, Greenland. J Geophys Res-Atmos, 2008, 113:D24302
    23 Amberger A, Schmidt H L. Natiirliche isotopengehalte von nitrat als indikatoren fur dessen herkunft. Geochim Cosmochim Acta, 1987,51:2699-2705
    24 Wassenaar L I. Evaluation of the origin and fate of nitrate in the abbotsford aquifer using the isotopes of ~(15)N and ~(18)O in NO_3~-Appl Geochem, 1995, 10:391-405
    25 McIlvin M R, Altabet M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem, 2005, 77:5589-5595
    26 Zheng R Z, Chen L, Wang J, et al. Improvement of zinc-cadmium reduction method for determination of nitrate in seawater(in Chinese).Adv Marine Sci,2011,29:229-234[郑瑞芝,陈岚,王键,等.锌镉还原法测定海水硝酸盐的改进.海洋科学进展,2011,29:229-234]
    27 Tu Y, Fang Y T, Liu D W, et al. Modifications to the azide method for nitrate isotope analysis. Rapid Commun Mass Spectrom, 2016, 30:1213-1222
    28 Wang X, Cao Y C, Han Y, et al. Determination of nitrogen and oxygen isotope ratio of nitrate in water with a chemical conversion method(in Chinese). Acta Pedol Sin, 2015, 52:558-566[王曦,曹亚澄,韩勇,等.化学转化法测定水体中硝酸盐的氮氧同位素比值.土壤学报,2015, 52:558-566]
    29 Savarino J, Vicars W C, Legrand M, et al. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign 2. Atmos Chem Phys, 2016, 16:2659-2673
    30 Shi G A, Buffen A M, Ma H, et al. Distinguishing summertime atmospheric production of nitrate across the East Antarctic ice sheet. Geochim Cosmochim Acta, 2018, 231:1-14
    31 Savarino J, Kaiser J, Morin S, et al. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica.Atmos Chem Phys, 2007, 7:1925-1945
    32 Morin S, Savarino J, Bekki S, et al. Signature of Arctic surface ozone depletion events in the isotope anomaly (△~(17)O) of atmospheric nitrate. Atmos Chem Phys, 2007, 7:1451-1469
    33 Savarino J, Morin S, Erbland J, et al. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer. Proc Natl Acad Sci USA, 2013, 110:17668-17673
    34 Nelson D M, Tsunogai U, Ding D, et al. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition. Atmos Chem Phys, 2018, 18:6381-6392
    35 Guha T, Lin C T, Bhattacharya S K, et al. Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in central Taiwan. Atmos Environ, 2017, 154:53-69
    36 Vicars W C, Morin S, Savarino J, et al. Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate:Results from the CalNex 2010 field study. J Geophys Res-Atmos, 2013, 118:10567-10588
    37 Savard M M, Cole A, Vet R, er al. The △~(17)O and δ~(18)O values of simultaneously collected atmospheric nitrates from anthropogenic sources-Implications for polluted air masses. Atmos Chem Phys, 2018, 3:1-25
    38 Proemse B C, Mayer B, Chow J C, et al. Isotopic characterization of nitrate, ammonium and sulfate in stack PM_(2.5)emissions in the Athabasca oil sands region, Alberta, Canada. Atmos Environ, 2012, 60:555-563
    39 Bourgeois I, Savarino J, Caillon N, et al. Tracing the fate of atmospheric nitrate in a subalpine watershed using △~(17)O. Environ Sci Technol, 2018,52:5561-5570
    40 Savarino J, Bhattacharya S K, Morin S, et al. The NO+O3 reaction:A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly. J Chem Phys, 2008, 128:194303
    41 Kendall C, Elliott E M, Wankel S D. Tracing anthropogenic inputs of nitrogen to ecosystems. In:Stable Isotopes in Ecology and Environmental Science. Oxford:Blackwell Publishing Ltd, 2007. 375-449
    42 Coplen T B, Bohlke J K, Casciotti K L. Using dual-bacterial denitrification to improveδ ~(15)N determinations of nitrates containing mass-dndependent ~(17)O. Rapid Commun Mass Spectrom, 2004. 18:245-250
    43 Tsunogai U, Komatsu D D, Daita S, et al. Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in eastern Asia using ~(17)O. Atmos Chem Phys, 2010, 1:1809-1020
    44 Proemse B C, Mayer B, Fenn M E, et al. A multi-isotope approach for estimating industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada. Environ Pollut, 2013, 182:80-91
    45 Smirnoff A, Martine M S, Vet R, et al. Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition. Rapid Commun Mass Spectrom, 2012, 26:2791-2804
    46 Michalski G, Meixner T, Fenn M, et al. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using △~(17)O. Environ Sci Technol, 2004, 38:2175-2181
    47 Morin S, Savarino J, Frey M M, et al. Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate. Science, 2008, 322:730-732
    48 Evans M J. Coupled evolution of BrO_x-ClO_x-HO_x-NO_x chemistry during bromine-catalyzed ozone depletion events in the Arctic boundary layer. J Geophys Res, 2003, 108:8368
    49 Saiz-Lopez A, Plane J M C. Mahajan A S, et al. On the vertical distribution of boundary layer halogens over coastal Antarctica:Implications for O3, HOx, NOx and the Hg lifetime. Atmos Chem Phys, 2008, 8:887-900
    50 Yang X, Cox R A, Warwick N J, et al. Tropospheric bromine chemistry and its impacts on ozone:A model study. J Geophys Res-Atmos,2005, 110:D23311
    51 Legrand M, Preunkert S, Frey M, et al. Large mixing ratios of atmospheric nitrous acid(HONO)at Concordia(east Antarctic plateau)in summer:A strong source from surface snow? Atmos Chem Phys, 2014, 14:9963-9976
    52 Dentener F, Williams J, Metzger S. Aqueous phase reaction of HN04:The impact on tropospheric chemistry. J Geophys Res-Atmos,2002,41:109-133
    53 Regimbal J M, Mozurkewich M. Peroxynitric acid decay mechanisms and kinetics at low pH. J Phys Chem A, 1997, 101:8822-8829
    54 L?gager T, Sehested K. Formation and decay of peroxynitrous acid:A pulse radiolysis study. J Phys Chem, 1993, 97:6664-6669
    55 Amel D F. Trends in the structure of federally insured depository institutions. Fed Res Bull, 1996, 82:1984-1994
    56 Hathorn B C, Marcus R A. An intramolecular theory of the mass-independent isotope effect for ozone I. J Chem Phys. 1999, 111:4087-4100
    57 Gao Y Q, Marcus R A. Strange and unconventional isotope effects in ozone formation. Science, 2011, 293:259-263
    58 Vicars W C, Savarino J. Quantitative constraints on the ~(17)O-excess (△~(17)O) signature of surface ozone:Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique. Geochim Cosmochim Acta, 2014, 135:270-287
    59 Ishino S, Hattori S, Savarino J, et al. Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. Atmos Chem Phys, 2017, 17:3713-3727
    60 Alexander B, Hastings M G, Allman D J, et al. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition(△~(17)O)of atmospheric nitrate. Atmos Chem Phys, 2009, 9:5043-5056
    61 Lyons J R. Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys Res Lett,2001, 28:3231-3234
    62 Janssen C,Guenther J,Krankowsky D,et al. Relative formation rates of ~(50)O_3 and ~(52)O_3 in ~(60)O-~(18)O mixtures. J Chem Phys, 1999,111:7179-7182
    63 Mauersberger K, Erbacher B, Krankowsky D, et al. Ozone isotope enrichment:Isotopomer-specific rate coefficients. Science, 1999, 283:370-372
    64 Michalski G, Bhattacharya S K. The role of symmetry in the mass independent isotope effect in ozone. Proc Natl Acad Sci USA, 2009,106:5493-5496
    65 Guenther J, Krankowsky D, Mauersberger K. Third-body dependence of rate coefficients for ozone formation in ~(16)O-~(18)O mixtures.Chem Phys Lett, 2000, 324:31-36
    66 Thiemens M H, Jackson T. Pressure dependency for heavy isotope enhancement in ozone formation. Geophys Res Lett, 1990,17:717-719
    67 Morton J, Barnes J, Schueler B, et al. Laboratory studies of heavy ozone. J Geophys Res-Atmos, 1990, 95:901-907
    68 Hallquist M, Stewart D J, Baker J, et al. Hydrolysis of N_2O_5 on submicron sulfuric acid aerosols. J Phys Chem A, 2000,104:3984-3990
    69 Mentel T F, Sohn M, Wahner A. Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols. Phys Chem Chem Phys, 1999, 1:5451-5457
    70 Tuazon E C, Atkinson R, Plum C N, et al. The reaction of gas phase N_2O_5 with water vapor. Geophys Res Lett, 1983, 10:953-956
    71 Wahner A, Mentel T F, Sohn M. Gas-phase reaction of N_2O_5 with water vapor:Importance of heterogeneous hydrolysis of N_2O_5 and surface desorption of HN03 in a large teflon chamber. Geophys Res Lett, 1998, 25:2169-2172
    72 Dubey M K, Mohrschladt R, Donahue N M, et al. Isotope specific kinetics of hydroxyl radical(OH) with water (H_2O):Testing models of reactivity and atmospheric fractionation. J Phys Chem A, 1997, 101:1494-1500
    73 Barkan E, Luz B. High precision measurements of ~(17)O/~(16)O and ~(18)O/~(16)O ratios in H_2O.Rapid Commun Mass Spectrom, 2005, 19:3737-3742
    74 Savarino J, Lee C C, Thiemens M H. Laboratory oxygen isotopic study of sulfur(IV)oxidation:Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on earth. J Geophys Res-Atmos, 2000, 105:29079-29088
    75 Erbland J, Savarino J, Morin S, et al. Air-snow transfer of nitrate on the east Antarctic plateau-part 2:An isotopic model for the interpretation of deep ice-core records. Atmos Chem Phys, 2015, 15:12079-12113
    76 Morin S, Sander R, Savarino J. Simulation of the diurnal variations of the oxygen isotope anomaly(△~(17)O)of reactive atmospheric species. Atmos Chem Phys, 2011, 11:3653-3671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700