机械球磨法制备纳米HATO及其性能测试
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Nano-HATO by Mechanical Milling Method and Its Performance Test
  • 作者:黎博 ; 刘巧娥 ; 高向东 ; 肖磊 ; 郝嘎子 ; 柯香 ; 张哲 ; 李东楠 ; 姜炜
  • 英文作者:LI Bo;LIU Qiao-e;GAO Xiang-dong;XIAO Lei;HAO Ga-zi;KE Xiang;ZHANG Zhe;LI Dong-nan;JIANG Wei;National Special Superfine Powder Engineer Research Center, Nanjing University of Science and Technology;Research Institute of Gansu Yinguang Chemical Industry Group Co., Ltd.;
  • 关键词:高能量密度材料 ; 纳米HATO ; 机械球磨 ; 纯度 ; 热分解 ; 感度
  • 英文关键词:high energy density material;;nano-HATO;;mechanical ball milling;;purity;;thermal decomposition;;sensitivity
  • 中文刊名:BGXB
  • 英文刊名:Chinese Journal of Explosives & Propellants
  • 机构:南京理工大学国家特种超细粉体工程技术研究中心;甘肃银光化学工业集团有限公司科研所;
  • 出版日期:2019-02-15
  • 出版单位:火炸药学报
  • 年:2019
  • 期:v.42;No.203
  • 基金:国家安全重大基础研究项目
  • 语种:中文;
  • 页:BGXB201901019
  • 页数:6
  • CN:01
  • ISSN:61-1310/TJ
  • 分类号:105-110
摘要
采用机械球磨法结合真空冷冻干燥技术制备了纳米5,5′-联四唑-1,1′-二氧二羟铵(HATO,又名TKX-50),用激光粒度仪分析其粒度分布,并通过扫描电子显微镜(SEM)观察其颗粒大小和形貌;采用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)对其晶型、成分及纯度进行分析;采用热重(TG)和差示扫描量热法(DSC)分析其热分解特性,同时测试了工业微米级及纳米HATO的摩擦感度和撞击感度。结果表明,制备的纳米HATO颗粒大小均匀,形貌规则呈类球形,平均粒径小于100nm,且引入的杂质极少;纳米HATO的热分解峰温较工业微米级HATO稍有提前,最大热失重温度降低2.46℃,表观活化能下降2.02kJ/mol,自发火温度提高2.95℃,表明热力学稳定性基本不变,安定性有所提高;纳米HATO的撞击感度和摩擦感度分别为44.5cm和48%,与工业微米级HATO相比分别降低了44%和16%,表明机械感度明显降低,安全性得到提高。
        Nano-sized dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate(HATO, also known as TKX-50)was prepared by mechanical milling method combined with vacuum freeze-drying technology. Its particle size distribution was analyzed by a laser particle size analyzer, and its particle size and morphology were observed by scanning electron microscopy(SEM). The crystal form, composition and purity were analyzed by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD). Its thermal decomposition characteristics were analyzed by thermogravimetry(TG) and differential scanning calorimetry(DSC), and the friction sensitivity and impact sensitivity of industrial micron-sized HATO and nano-HATO were tested. Results show that the prepared nano-HATO particles are uniform in size, spherical in shape, with an average particle size of less than 100 nm and few impurities. The thermal decomposition peak temperature of nano-HATO is slightly advanced compared with that of industrial micron-sized HATO. The maximum thermal mass loss temperature is reduced by 2.46℃,the apparent activation energy is decreased by 2.02 kJ/mol, and the self-ignition temperature is increased by 2.95℃,indicating that the thermodynamic stability is basically unchanged and the stability is improved. The impact sensitivity and friction sensitivity of nano-HATO are 44.5 cm and 48%, respectively, which are 44% and 16% lower than those of industrial micron-sized HATO, indicating that the mechanical sensitivity is significantly reduced and the safety is improved.
引文
[1] Fischer N, Fischer D, Klapotke T, et al. Pushing the limits of energetic materials the synthesis and characterization of dihydroxylammonium 5,5-prime-bistetrazole-1,1-prime-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
    [2] 葛忠学, 毕福强. 高能不敏感含能材料——HATO[J]. 含能材料, 2014, 22(4): 434-435. GE Zhong-xue, BI Fu-qiang. HATO, the insensitive high energetic material [J]. Energetic Materials, 2014, 22(4): 434-435.
    [3] 毕福强, 付小龙, 邵重斌,等. 高能单元推进剂TKX-50能量特性计算研究[J]. 化学推进剂与高分子材料, 2013, 11(5): 70-73. BI Fu-qiang, FU Xiao-long, SHAO Chong-bin, et al. Calculation of energy characteristics of high energy monopropellant TKX-50 [J]. Chemical Propellants & Polymeric Materials, 2013, 11(5): 70-73.
    [4] 王永顺, 南海, 赵省向,等. HATO爆轰性能的理论计算[J]. 科学技术与工程, 2015, 15(13): 165-166,174. WANG Yong-shun, NAN Hai, ZHAO Sheng-xiang, et al. Calculation of detonation performance for HATO [J]. Science Technology and Engineering, 2015, 15(13): 165-166,174.
    [5] 侯聪花, 刘志强, 张园萍,等. 喷雾重结晶细化法制备超细HMX及其性能表征[J]. 火炸药学报, 2018, 41(1): 26-30. HOU Cong-hua, LIU Zhi-qiang, ZHANG Yuan-ping, et al. Preparation of ultrafine HMX by spray recrystallization refining method and its performance characterization [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(1): 26-30.
    [6] 耿孝恒, 王晶禹, 张景林. 不同粒度HMX的重结晶制备和机械感度研究[J]. 山西化工, 2009, 29(3): 22-24. GENG Xiao-heng, WANG Jing-yu, ZHANG Jing-lin. Recrystallization preparation of different granularity HMX and study on the mechanical sensitivity [J]. Shanxi Chemical Industry, 2009, 29(3): 22-24.
    [7] 吕春玲, 张景林. 粒度对HMX撞击感度的影响[J]. 爆炸与冲击, 2003, 23(5): 472-474. Lü Chun-ling, ZHANG Jing-lin. Influence of particle size on the impact sensitivity of HMX [J]. Explosion and Shock Waves, 2003, 23(5): 472-474.
    [8] 王龙祥, 刘杰, 曾江保,等. 纳米RDX的热性能及感度研究[J]. 爆破器材, 2013(6): 14-18. WANG Long-xiang, LIU jie, ZENG Jiang-bao, et al. Study on thermal properties and sensitivities of nano-RDX [J]. Explosive Materials, 2013(6): 14-18.
    [9] 宋小兰, 李凤生, 张景林,等. 纳米RDX的制备及其机械感度和热分解特性[J]. 火炸药学报, 2008, 31(6): 1-4. SONG Xiao-lan, LI Feng-sheng, ZHANG Jing-lin, et al. Preparation, mechanical sensitivity and thermal decomposition characteristics of RDX nanoparticles [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2008, 31(6): 1-4.
    [10] 刘杰, 姜炜, 李凤生,等. 纳米级奥克托今的制备及性能研究[J]. 兵工学报, 2013, 34(2): 174-180. LIU Jie,JIANG Wei,LI Feng-sheng, et al. Preparation and study of nano octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoci-ne [J]. Acta Armamentarii, 2013, 34(2): 174-180.
    [11] Bayat Y, Zeynali V. Preparation and characterization of nano-CL-20 explosive [J]. Journal of Energetic Materials, 2011, 29(4): 281-291.
    [12] 毕福强, 樊学忠, 付小龙,等. 1,1′-二羟基-5,5′-联四唑二羟胺盐和CMDB推进剂组分的相互作用研究[J]. 固体火箭技术, 2014(2): 214-218. BI Fu-qiang, FAN Xue-zhong, FU Xiao-long, et al. Interaction of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate with CMDB propellant components [J]. Journal of Solid Rocket Technology, 2014(2): 214-218.
    [13] Huang H F, Shi Y M, Yang J, et al. Compatibility study of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate with some energetic materials and inert materials [J]. Journal of Energetic Materials, 2015, 33(1): 66-72.
    [14] Xiong S L, Chen S S, Jin S H, et al. Molecular dynamic simulations on TKX-50/HMX cocrystal [J]. RSC Advances, 2017(7): 6795-6799.
    [15] 肖磊, 刘杰, 郝嘎子,等. 微纳米RDX颗粒级配对压装PBX性能影响[J]. 含能材料, 2016, 24(12): 1193-1197. XIAO Lei, LIU Jie, HAO Ga-zi, et al. Effects of nano-micrometer RDX particle gradation on the property of PBX [J]. Energetic Materials, 2016, 24(12): 1193-1197.
    [16] 杨青, 刘杰, 曾江保,等. 纳米HMX基PBX的热分解特性[J]. 火炸药学报, 2014,37(6): 16-19. YANG Qing, LIU Jie, ZENG Jiang-bao, et al. Thermal decomposition characteristics of nano-HMX based PBX [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2014,37(6): 16-19.
    [17] 戎园波, 肖磊, 王庆华,等. 微/纳米HMX粒度级配对TNT基熔铸炸药性能的影响[J]. 火炸药学报, 2018, 41(1): 36-40. RONG Yuan-bo, XIAO Lei, WANG Qing-hua, et al. Effect of micro/nanometer HMX gradation on the properties of TNT-based castable explosives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(1): 36-40.
    [18] 靳承苏, 肖磊, 王庆华,等. 微/纳米HMX颗粒级配对PBX性能的影响[J]. 含能材料, 2017, 25(11): 913-919.JIN Cheng-su, XIAO Lei, WANG Qing-hua, et al. Effect of nano/micrometer HMX particle gradation on PBX properties [J]. Energetic Materials, 2017, 25(11): 913-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700