全球升温1.5℃和2.0℃情景下中国实际蒸散发时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial and Temporal Variation of Actual Evapotranspiration in China under the 1.5℃ and 2.0℃ Global Warming Scenarios
  • 作者:苏布达 ; 周建 ; 王艳君 ; 陶辉 ; 高超 ; 刘俸霞 ; 李修仓 ; 姜彤
  • 英文作者:SU Bu-da;ZHOU Jian;WANG Yan-jun;TAO Hui;GAO Chao;LIU Feng-xia;LI Xiu-cang;JIANG Tong;Collaboration Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Geography, Nanjing University of Information Science &Technology;National Climate Center;State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences;Department of Geography and Spatial Information Technology, Ningbo University;
  • 关键词:蒸散发 ; 升温1.5℃ ; 升温2.0℃ ; 十大流域 ; 气候变化
  • 英文关键词:Evapotranspiration;;1.5℃ warming;;2.0℃ warming;;Ten river basins;;Climate change
  • 中文刊名:ZGNY
  • 英文刊名:Chinese Journal of Agrometeorology
  • 机构:南京信息工程大学气象灾害预报预警与评估协同中心/地理科学学院;中国气象局国家气候中心;中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室;宁波大学地理与空间信息技术系;
  • 出版日期:2018-05-20
  • 出版单位:中国农业气象
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(41571494);; 中国气象局气候变化专项“气候变化影响综合评估”(CCSF 201722)
  • 语种:中文;
  • 页:ZGNY201805001
  • 页数:11
  • CN:05
  • ISSN:11-1999/S
  • 分类号:5-15
摘要
蒸散发是水文循环的关键过程,研究升温背景下的蒸散发对水资源综合管理有着重要意义。基于17个全球气候模式1961-2100年逐月蒸散发输出,分析了全球升温1.5℃和2.0℃情景下,中国实际蒸散发时空变化特征。结果表明:(1)全球升温1.5℃,年实际蒸散发呈现由东南沿海向西北内陆递减态势。与基准期1986-2005年相比,中国年实际蒸散发约增加4.4%,其中,西北诸河流域增长率最大,达7.7%。季节尺度上,冬季实际蒸散发增长速率最快,约5.2%。(2)全球升温2.0℃,中国实际蒸散发比1986-2005年上升7.8%,南方流域增长速率比北方流域小,珠江流域仅增长3.9%,实际蒸散发增长最为迅猛的辽河流域和西北诸河流域中部增长率达10%。春冬两季中国蒸散发增加最明显,达8.3%。(3)与全球升温1.5℃情景相比,全球平均气温额外增加0.5℃可能导致中国实际蒸散发增加3.4%。其中,西南诸河西北部、西北诸河西南部及辽河流域增加明显,而西北诸河东北部和西北部等地微弱减少。春季蒸散发增长速率最大,秋季最小。随着全球变暖,中国实际蒸散发呈现上升趋势,可能加剧区域干旱事件,对农业生产带来不利影响。
        Evapotranspiration is a key process of hydrological cycle, and understanding it's changing patterns in the warming world is of great significance to the integrated water resources management. Monthly evapotranspiration outputs from 17 global climate models for 1961-2100 are used to analyze spatial and temporal changes of actual evapotranspiration over China under the 1.5℃ and 2.0℃ global warming scenarios. The results showed that:(1) In the 1.5℃ warming level, annual actual evapotranspiration in China will show a spatial pattern of decrease from the southeast coastal area to the northwest inland. Actual evapotranspiration over China is projected to 4.4% higher than in the reference period of 1986-2005, with the highest growth rate of 7.7% in the Northwest River Basin. Seasonally, increase of actual evapotranspiration will be obvious in winter, reaching at about 5.2%.(2) In the 2.0℃ warming, annual actual evapotranspiration over China will increase by 7.8% with relative to the reference period. The growth rate in the river basins in southern China is less than that in the north. Increase of actual evapotranspiration in the Pearl River Basin will be about 3.9%, but possibly approaching 10% in the Liaohe River Basin in northeast China and the central Northwest River Basin. On seasonal scale, the highest increase of actual evapotranspiration by 8.3% will be in spring and winter over China.(3) Relative to the 1.5℃ level, annual actual evapotranspiration will increase by about 3.4% for an additional 0.5℃ global warming scenario in China. Evapotranspiration is projected to increase obviously in northwest of the Southwest River Basin, southwest of the Northwest River Basin and the Liaohe River Basin, but might be slightly reduced in northeast and northwest parts of the Northwest River Basin. Seasonally, growth rate will be high in spring but comparatively less in autumn. The projected result that the actual evapotranspiration might show an upward trend in China with the increase of global mean temperature indicates aggravation of regional droughts in future, which might bring adverse impacts on agricultural production.
引文
[1]徐宗学,刘琳,杨晓静.极端气候事件与旱涝灾害研究回顾与展望[J].中国防汛抗旱,2017,27(1):66-74.Xu Z X,Liu L,Yang X J.Study on extreme climate events and drought/flood disasters:review and prospect[J].China Flood&Drought Management,2017,27(1):66-74.(in Chinese)
    [2]李修仓.中国典型流域实际蒸散发的时空变异研究[D].南京:南京信息工程大学,2013.Li X C.Spatio-temporal variation of actual evapotranspiration in the Pearl,Haihe and Tarim River Basins of China[D].Nanjing:Nanjing University of Information Science and Technology,2013.(in Chinese)
    [3]蹇东南,李修仓,陶辉,等.基于互补相关理论的塔里木河流域实际蒸散发时空变化及影响因素分析[J].冰川冻土,2016,38(3):750-760.Jian D N,Li X C,Tao H,et al.Spatio-temporal variation of actual evapotranspiration and its influence factors in theTarim River Basin based on the complementary relationship approach[J].Journal of Glaciology and Geocryology,2016,38(3):750 -760.(in Chinese)
    [4]陈东东,王晓东,王森,等.四川省潜在蒸散发变化及其气候影响因素分析[J].中国农业气象,2017,38(9):548-557.Chen D D,Wang X D,Wang S,et al.Potential evapotranspiration changes and its effects of meteorological factors across Sichuan province[J].Chinese Journal of Agrometeorology,2017,38(9):548-557.(in Chinese)
    [5]张丹,梁康,聂茸,等.基于Budyko假设的流域蒸散发估算及其对气候与下垫面的敏感性分析[J].资源科学,2016,38(6):1140-1148.Zhang D,Liang K,Nie R,et al.Estimation of evapotranspiration and sensitivity to climate and the underlying surface based on the Budyko Framework[J].Resources Science,2016,38(6):1140-1148.(in Chinese)
    [6]吴桂平,刘元波,赵晓松,等.基于MOD16产品的鄱阳湖流域地表蒸散发时空分布特征[J].地理研究,2013,32(4):617-627.Wu G P,Liu Y B,Zhao X S,et al.Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16products[J].Geographical Research,2013,32(4):617-627.(in Chinese)
    [7]贺添,邵全琴.基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析[J].地球信息科学学报,2014,16(6):979-988.He T,Shao Q Q.Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16products[J].Geo-Information Science,2014,16(6):979-988.(in Chinese)
    [8]杨秀芹,王磊,王凯,等.基于MOD16产品的淮河流域实际蒸散发时空分布[J].冰川冻土,2015,37(5):1343-1352.Yang X Q,Wang L,Wang K,et al.Spatio-temporal distribution of terrestrial evapotranspiration in Huaihe River Basin based on MOD16 ET data[J].Journal of Glaciology and Geocryology,2015,37(5):1343-1352.(in Chinese)
    [9]赫晓慧,梁冰洁,郭恒亮,等.基于MOD16的北洛河流域蒸散发空间格局演变研究[J].水土保持通报,2017,37(1):177-182.He X H,Liang B J,Guo H L,et al.Analysis of spatial and temporal variation of evapotranspiration based on MOD16 in Beiluo River basin[J].Bulletin of Soil and Water Conservation,2017,37(1):177-182.(in Chinese)
    [10]张静,任志远.基于MOD16的汉江流域地表蒸散发时空特征[J].地理科学,2017,37(2):274-282.Zhang J,Ren Z Y.Spatiotemporal characteristics of evapotranspiration based on MOD16 in the Hanjiang River Basin[J].Scientia Geographica Sinica,2017,37(2):274-282.(in Chinese)
    [11]温姗姗,姜彤,李修仓,等.1961-2010年松花江流域实际蒸散发时空变化及影响要素分析[J].气候变化研究进展,2014,10(2):79-86.Wen S S,Jiang T,Li X C,et al.Changes of actual evapotranspiration over the Songhua River Basin from 1961to 2010[J].Advances in Climate Change Research,2014,10(2):79-86.(in Chinese)
    [12]李修仓,姜彤,温姗姗,等.珠江流域实际蒸散发的时空变化及影响要素分析[J].热带气象学报,2014,30(3):483-494.Li X C,Jiang T,Wen S S,et al.Spatio-temporal variation of actual evapotranspiration and its impact factors in Pearl River Basin,China[J].Journal of Tropical Meteorology,2014,30(3):483-494.(in Chinese)
    [13]蒋春宇,黄领梅,沈冰,等.CRAE模型在新疆和田绿洲的适用性分析[J].水资源与水工程学报,2016,27(2):51-54.Jiang C Y,Huang L M,Shen B,et al.Applicability of CRAE model in Hotan oasis of Xinjiang[J].Journal of Water Resources&Water Engineering,2016,27(2):51-54.(in Chinese)
    [14]朱非林,王卫光,孙一萌,等.汉江流域实际蒸散发的时空演变规律及成因分析[J].河海大学学报(自然科学版),2013,(4):300-306.Zhu F L,Wang W G,Sun Y M,et al.Spatial and temporal variations of actual evapotranspiration and their causes in Hanjiang River Basin[J].Journal of Hohai University(Natural Sciences),2013,(4):300-306.(in Chinese)
    [15]谢今范,韦小丽,张晨琛,等.第二松花江流域实际蒸散发的时空变化特征和影响因素[J].生态学杂志,2013,32(12):3336-3343.Xie J F,Wei X L,Zhang C C,et al.Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River Basin,Northeast China[J].Chinese Journal of Ecology,2013,32(12):3336-3343.(in Chinese)
    [16]赵宗慈.为IPCC第五次评估报告提供的全球气候模式预估[J].气候变化研究进展,2009,5(4):241-243.Zhao Z C.Experiments of global climate models proposed for IPCC AR5[J].Advances in Climate Change Research,2009,5(4):241-243.(in Chinese)
    [17]王安乾,苏布达,王艳君,等.全球升温1.5℃与2.0℃情景下中国极端低温事件变化与耕地暴露度研究[J].气象学报,2017,75(3):415-428.Wang A Q,Su B D,Wang Y J,et al.Variation of the extreme minimum temperature events and farmland exposure under global warming of 1.5℃and 2.0℃[J].Acta Meteorologica Sinica,2017,75(3):415-428.(in Chinese)
    [18]张娇艳,李扬,张东海,等.基于CMIP5全球气候模式的21世纪贵州省极端降水事件预估[J].中国农业气象,2017,38(10):655-662.Zhang J Y,Li Y,Zhang D H,et al.Projected changes in extreme precipitation events in Guizhou based on CMIP5simulations over the 21st century[J].Chinese Journal of Agrometeorology,2017,38(10):655-662.(in Chinese)
    [19]Su B D,Huang J L,Gemmer M,et al.Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin[J].Atmospheric Research,2016,178-179:138-149.
    [20]朱海霞,吕佳佳,李秀芬,等.SRES A2/B2情景下未来黑龙江省积温带格局的演变[J].中国农业气象,2014,35(5):485-491.Zhu H X,Lv J J,Li X F,et al.Potential variation of accumulated temperature zone in Heilongjiang Province under SRES A2/B2 scenarios[J].Chinese Journal of Agrometeorology,2014,35(5):485-491.(in Chinese)
    [21]刘文茹,居辉,陈国庆,等.典型浓度路径(RCP)情景下长江中下游地区气温变化预估[J].中国农业气象,2017,38(2):65-75.Liu W R,Ju H,Chen G Q,et al.Prediction on the possible air temperature change over the middle and lower Yangtze River Basin under the RCP scenarios[J].Chinese Journal of Agrometeorology,2017,38(2):65-75.(in Chinese)
    [22]Sillmann J,Roeckner E.Indices for extreme events in projections of anthropogenic climate change[J].Climatic Change,2008,86(1):83-104.
    [23]孟玉婧,姜彤,苏布达,等.高分辨率区域气候模式CCLM对鄱阳湖流域气温的模拟评估[J].中国农业气象,2013,34(2):123-129.Meng Y J,Jiang T,Su B D,et al.Temperature simulation assessment by high-resolution regional climate model(CCLM)in Poyang Lake Basin[J].Chinese Journal ofAgrometeorology,2013,34(2):123-129.(in Chinese)
    [24]陈静,刘洪滨,王艳君,等.华北平原干旱事件特征及农业用地暴露度演变分析[J].中国农业气象,2016,37(5):587-599.Chen J,Liu H B,Wang Y J,et al.Variation of drought characteristics and its agricultural exposure in North China Plain[J].Chinese Journal of Agrometeorology,2016,37(5):587-599.(in Chinese)
    [25]Milly P C D,Dunne K A.Potential evapotranspiration and continental drying[J].Nature Climate Change,2016,6(10):946-951.
    [26]中华人民共和国水利部.中国水资源公报[M].北京:中国水利水电出版社,2010:1-51.The Ministry of Water Resources of the People’s Republic of China.China water resources bulletin[M].Beijing:China Water Power Press,2010:1-51.(in Chinese)
    [27]Zhang K,Kimball J S,Mu Q,et al.Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005[J].Journal of Hydrology,2009,379(1-2):92-110.
    [28]Zhang K,Kimball J S,Nemani R R,et al.Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J].Scientific Reports,2015,5(2):75-77.
    [29]Zhang K,Kimball J S,Nemani R R,et al.A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J].Water Resources Research,2010,46(9):109-118.
    [30]IPCC.Climate change 2013:the physical science basis.IPCC working group I contribution to AR5[M].Cambridge UK,New York,USA:Cambridge University Press,2013.
    [31]IPCC.Climate change 2014:synthesis report.In:contribution of working groups I,II and III to the fifth assessment reportof the intergovernmental panel on climate change[M].IPCC Geneva,Switzerland,2014:151.
    [32]刘俸霞,王艳君,赵晶,等.全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J].长江流域资源与环境,2017,26(5):778-788.Liu F X,Wang Y J,Zhao J,et al.Variations of the extreme precipitation under the global warning of 1.5℃and 2.0℃in the mid-lower reaches of the Yangtze River Basin[J].Resources and Environment in The Yangtze Basin,2017,26(5):778-788.(in Chinese)
    [33]Sun H M,Wang Y J,Chen J,et al.Exposure of population to droughts in the Haihe River Basin under global warming of1.5 and 2.0℃scenarios[J].Quaternary International,2017,453(9):74-84.
    [34]Su B D,Jian D N,Li X C,et al.Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5℃and 2.0℃in the Tarim River Basin,China[J].Atmospheric Research,2017,196(11):119-128.
    [35]Warszawski L,Frieler K,Huber V,et al.The Inter-Sectoral Impact Model Intercomparison Project(ISI-MIP):project framework[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(9):3228-3232.
    [36]Schleussner C F,Lissner T K,Fischer E M,et al.Differential climate impacts for policy-relevant limits to global warming:the case of 1.5℃and 2℃[J].Earth System Dynamics,2016,7(2):327-351.
    [37]Das L,Annan J D,Hargreaves J C,et al.Improvements over three generations of climate model simulations for eastern India[J].Climate Research,2012,51(3):201-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700