沙纹床面振荡流边界层的三维格子玻尔兹曼模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-Dimensional Lattice Boltzmann Simulation of Oscillatory Boundary Layer Flow over Rippled Bed
  • 作者:周志博 ; 张庆河 ; 张金凤
  • 英文作者:Zhou Zhibo;Zhang Qinghe;Zhang Jinfeng;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;Center for Ocean Hydrodynamics Research,Tianjin Research Institute for Water Transport Engineering,Ministry of Transport;
  • 关键词:沙纹 ; 振荡流边界层 ; 格子玻尔兹曼方法 ; 大涡模拟
  • 英文关键词:sand ripple;;oscillatory boundary layer;;lattice Boltzmann method;;large-eddy simulation
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学水利工程仿真与安全国家重点实验室;交通运输部天津水运工程科学研究院海洋水动力研究中心;
  • 出版日期:2019-01-30
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.338
  • 基金:国家自然科学基金资助项目(51179122)~~
  • 语种:中文;
  • 页:TJDX201904013
  • 页数:10
  • CN:04
  • ISSN:12-1127/N
  • 分类号:98-107
摘要
将壁面自适应局部涡黏(WALE)模型引入三维格子玻尔兹曼模型,对沙纹床面上的振荡流边界层运动进行了模拟,并与Smagorinsky模型的模拟结果进行了比较.结果表明,在振荡流沙纹床面模拟中,WALE模型与Smagorinsky模型均获得与已有实验结果吻合较好的垂向流速剖面,但WALE模型可以更好地反映粗糙紊流的特性.引入WALE模型的LB模型模拟得到的沙纹床面形状摩阻系数和肤面摩阻系数结果与前人数模结果一致,床面总摩阻力中形状摩阻相比肤面摩阻占主要部分.该模型可进一步应用于振荡流作用下沙纹床面紊流边界层运动特性的系统研究.
        A three-dimensional lattice Boltzmann model combined with wall-adapting local eddy-viscosity(WALE)model was developed. Simulations of oscillatory boundary layer flow over rippled bed were carried out. The results from WALE model and Smagorinsky model were compared. The comparison indicates that both WALE model and Smagorinsky model can obtain vertical velocity profiles which agree well with the existing experimental data,but WALE model is more feasible to solve the characteristics of rough turbulence. The form friction factor and skin friction factor of rippled bed obtained from LB model combined with WALE model are consistent with literature. Compared with skin shear stress,form shear stress is dominant in total stress. The model can be further used to systematically study the characteristics of oscillatory turbulent boundary layer flow over rippled bed.
引文
[1]Freds?e J,Andersen K H,Sumer B M.Wave plus current over a ripple-covered bed[J].Coastal Engineering,1999,38(4):177-221.
    [2]Hare J,Hay A E,Zedel L,et al.Observations of the space-time structure of flow,turbulence,and stress over orbital-scale ripples[J].Journal of Geophysical Research,2014,119(3):1876-1898.
    [3]van der Werf J J,Magar V,Malarkey J,et al.2DVmodelling of sediment transport processes over full-scale ripples in regular asymmetric oscillatory flow[J].Continental Shelf Research,2008,28(8):1040-1056.
    [4]蒋昌波,白玉川,赵子丹,等.波浪作用下沙纹床面底层流动特性研究[J].水科学进展,2003,14(3):333-340.Jiang Changbo,Bai Yuchuan,Zhao Zidan,et al.Study on wave bottom boundary layers over a rippled bed[J].Advances in Water Science,2003,14(3):333-340(in Chinese).
    [5]蒋昌波,白玉川,赵子丹,等.波浪作用下涡动沙纹床面的悬沙运动数值研究[J].水利学报,2003(3):93-97.Jiang Changbo,Bai Yuchuan,Zhao Zidan,et al.Numerical study on suspended sediment movement in wave boundary layers over rippled bed[J].Journal of Hydraulic Engineering,2003(3):93-97(in Chinese).
    [6]蒋昌波,白玉川,赵子丹,等.沙纹床面上波流共同作用的数值模拟[J].水利学报,2005,36(1):62-68.Jiang Changbo,Bai Yuchuan,Zhao Zidan,et al.Numerical simulation for joint action of wave and current on rippled sea bed[J].Journal of Hydraulic Engineering,2005,36(1):62-68(in Chinese).
    [7]程永舟,王永学,蒋昌波.非线性波作用下非对称沙纹床面流场特性数值分析[J].大连理工大学学报,2008,48(3):423-429.Cheng Yongzhou,Wang Yongxue,Jiang Changbo.Numerical analysis of characteristics of fluid field over asymmetric rippled bed under nonlinear wave[J].Journal of Dalian University of Technology,2008,48(3):423-429(in Chinese).
    [8]Barr B C,Slinn D N,Pierro T,et al.Numerical simulation of turbulent,oscillatory flow over sand ripples[J].Journal of Geophysical Research,2004,109:C09009-1-19.
    [9]Grigoriadis D G E,Balaras E,Dimas A A.Coherent structures in oscillating turbulent boundary layers over a fixed rippled bed[J].Flow,Turbulence and Combustion,2013,91(3):565-585.
    [10]Zhang Q H,Sun Y B,Zhang J F.Simulation of oscillatory laminar boundary layer flow via the lattice Boltzmann method[C]//Proceedings of 3rd Internatioal Conference on Asian and Pacific Coasts.Jeju,Korea,2005:271-274.
    [11]孙亚斌,张庆河,张金凤.振荡层流边界层运动的格子Boltzmann模拟[J].水动力学研究与进展,2006,21(3):347-353.Sun Yabin,Zhang Qinghe,Zhang Jinfeng.Simulation of oscillatory laminar boundary layer flow based on lattice Boltzmann method[J].Journal of Hydrodynamics,2006,21(3):347-353(in Chinese).
    [12]Cappietti L,Chopard B.A lattice Boltzmann study of the 2D boundary layer created by an oscillating plate[J].International Journal of Modern Physics C,2006,17(1):39-52.
    [13]丁磊,张庆河.振荡流边界层中颗粒受力的三维格子玻耳兹曼模拟[J].水动力学研究与进展,2010,25(3):391-397.Ding Lei,Zhang Qinghe.3D lattice Boltzmann simulation of forces on a fixed spherical[J].Journal of Hydrodynamics,2010,25(3):391-397(in Chinese).
    [14]Ding L,Zhang Q H.Lattice Boltzmann simulation to characterize roughness effects of oscillatory boundary layer flow over a rough bed[C]//Proceedings of 32nd Conference on Coastal Engineering.Shanghai,China,2010:1397-1407.
    [15]周志博,张庆河.粗糙床面振荡紊流边界层运动的三维格子玻尔兹曼模拟[J].水动力学研究与进展,2016,31(4):463-471.Zhou Zhibo,Zhang Qinghe.3-D lattice Boltzmann simulation of turbulent oscillatory boundary layer flow over rough beds[J].Chinese Journal of Hydrodynam-ics,2016,31(4):463-471(in Chinese).
    [16]Nicoud F,Ducros F.Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J].Flow,Turbulence and Combustion,1999,62(3):183-200.
    [17]Weickert M,Teike G,Schmidt O,et al.Investigation of the LES WALE turbulence model within the lattice Boltzmann framework[J].Computers&Mathematics with Applications,2010,59(7):2200-2214.
    [18]Qian Y H,d'Humières D,Lallemand P.Lattice BGKmodels for navier-stokes equation[J].Europhysics Letters,1992,17(6):479-484.
    [19]Bhatnagar P L,Gross E P,Krook M.A model for collision processes in gases[J].Physical Review,1954,94:511-524.
    [20]d'Humieres D.Generalized lattice-Boltzmann equations[C]//Rarefied Gas Dynamics:Theory and Simulations.Washington,USA,1992:450-458.
    [21]Lallemand P,Luo L S.Theory of the lattice Boltzmann method:Dispersion,dissipation,isotropy,Galilean invariance,and stability[J].Physical Review E,2000,61(6):6546-6562.
    [22]Ladd A J C,Verberg R.Lattice-Boltzmann simulations of particle-fluid suspensions[J].Journal of Statistical Physics,2001,104(5/6):1191-1251.
    [23]He X,Zou Q,Luo L S,et al.Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J].Journal of Statistical Physics,1997,87(1/2):115-136.
    [24]Nguyen N Q,Ladd A J C.Sedimentation of hard-sphere suspensions at low Reynolds number[J].Journal of Fluid Mechanics,2005,525:73-104.
    [25]Ladd A J C.Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Part 1):Theoretical foundation[J].Journal of Fluid Mechanics,1994,271:285-309.
    [26]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-129.Cui Guixiang,Xu Chunxiao,Zhang Zhaoshun.Progress in large eddy simulation of turbulent flows[J].Acta Aerodynamica Sinica,2004,22(2):121-129(in Chinese).
    [27]Temmerman L,Leschziner M A,Mellen C P,et al.Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions[J].International Journal of Heat and Fluid Flow,2003,24(2):157-180.
    [28]Dimas A A,Kolokythas G A.Flow dynamics and bed resistance of wave propagation over bed ripples[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2011,137(2):64-74.
    [29]Kim H.Effective form roughness of ripples for waves[J].Journal of Coastal Research,2004,20(3):731-738.
    [30]Wikramanayake P N,Madsen O S.Calculation of Movable Bed Friction Factors[M].McNair E C,Russell KT.Dredging Research Program.Vicksburg:Army Corps of Engineers:1994:1-104.
    [31]Jeong J,Hussain F.On the identification of a vortex[J].Journal of Fluid Mechanics,1995,285:69-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700