基于大涡模拟的悬板径向坡度对排沙漏斗流场特性影响数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of the effect of the radial gradient of the suspension plate on the characteristics of the sediment discharge funnel flow field based on large eddy simulation
  • 作者:王平圆 ; 吴洋锋 ; 李琳
  • 英文作者:WANG Pingyuan;WU Yangfeng;LI Lin;School of Faculty of Water and Civil Engineering,Xinjiang Agricultural University;
  • 关键词:排沙漏斗 ; 大涡模拟 ; VOF方法 ; 流场特性 ; 数值模拟 ; 悬板径向坡度
  • 英文关键词:sand funnel;;large eddy simulation;;VOF method;;flow field characteristics;;numerical Simulation
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:新疆农业大学水利与土木工程学院;
  • 出版日期:2019-02-15
  • 出版单位:水资源与水工程学报
  • 年:2019
  • 期:v.30;No.143
  • 基金:国家自然科学基金项目(51369031);; 新疆自治区高校科研计划项目(XJEDU2018I010)
  • 语种:中文;
  • 页:XBSZ201901024
  • 页数:8
  • CN:01
  • ISSN:61-1413/TV
  • 分类号:159-166
摘要
为了解悬板径向坡度改变对排沙漏斗流场的影响,文章采用了大涡模拟和VOF相结合的方法对悬板径向坡度i=0、0. 083、0. 173、0. 259时的排沙漏斗水气两相三维流场进行了数值模拟,并采用离散相颗粒轨道模型(DPM)模拟了悬板径向坡度不同时排沙漏斗对粒径0. 001~0. 1 mm颗粒的截除率。模拟结果表明:随着径向坡度增加,切向流速先增大后减小或趋于恒定,说明室内涡流强度并不是随着悬板径向坡度的增大而单调增加,存在一临界的坡度使室内涡流强度达到最大值;坡度i=0. 173时悬板上方区域(除溢流表层外)径向和垂向的合速度方向平行于悬板径向底坡且指向漏斗中心,使该区内的泥沙被再次输运至漏斗室而不易随溢出水流流出,减少了泥沙进入下游和沉降落淤于悬板的机率。颗粒截除率模拟结果也表明i=0. 173时的漏斗对各级粒径颗粒截除率最大,也表明悬板径向坡度存在一临界值使漏斗截除率达到最大值。
        To understand the effect of changing the radial gradient of the suspension plate on the flow field in the sediment discharge funnel,the vortex funnel water with the slope of i = 0,0. 083,0. 173,and 0. 259 was calculated by combining the large eddy simulation and VOF methods. The three-dimensional flow field of gas two-phase flow was numerically simulated,and the discrete phase particle trajectory model( DPM) was used to simulate the cut-off rate of particle size of 0. 001 mm ~ 0. 1 mm particle size by the sand funnel at different radial slopes. The simulation results showed that the tangential flow velocity increased first,then decreased or tends to be constant as the radial gradient increases,indicating that the indoor vortex intensity does not increase monotonically with the radial gradient of the suspension plate,and there is a critical gradient. The eddy current intensity in the room was maximized; when slope i = 0. 173,the radial and vertical combined velocity in the upper region of the suspension plate( except for the overflow surface) is parallel to the radial slope of the suspension plate and points to the center of the funnel. The sediment was transported to the hopper chamber again and it was not easy to flow out with the overflow stream,reducing the probability that the sediment will enter the downstream and the sediment will fall on the suspension. The simulation results of the particle rejection rate also showed that the funnel has the largest cut-off rate for the particle size at each stage when i = 0. 173,and it also indicated that there is a critical value for the radial slope of the suspending plate,so that the funnel cut-off rate reaches a maximum value.
引文
[1]肖柏青,戎贵文.排沙漏斗悬移质泥沙运动数值模拟[J].水利学报,2017,48(8):986-992.
    [2]李琳.排沙漏斗结构优化研究[D].乌鲁木齐:新疆农业大学,2005.
    [3]谭冬初.排沙漏斗的水力分析计算[J].水动力学研究与进展(A辑),1999,14(2):176-183.
    [4]刘善均,张建民,曲景学,等.排沙漏斗优化及输沙特性试验研究[J].四川大学学报(工程科学版),2003,35(4):6-9.
    [5]吴洋锋,李琳.排沙漏斗悬板径向坡度对流场影响的试验研究[J].南水北调与水利科技,2018,16(3):162-168+174.
    [6]肖柏青,周著,邱秀云,等.排沙漏斗中的二次流及其影响[J].新疆农业大学学报,2007,30(1):71-74.
    [7]赵彦彦,王英歌,齐海龙.漏斗式全沙排沙技术研究与工程应用[J].河北水利,2005(9):35.
    [8]周著,侯杰,邱秀云,等.漏斗式全沙排沙技术研究与应用[J].中国三峡建设,2004,11(5):55-56.
    [9]周著,邱秀云,侯杰,等.漏斗式全沙排沙技术及其应用[J].新疆水利,2001,12(1):95-98.
    [10]李琳,牧振伟,周著.排沙漏斗截沙率计算[J].水利水电科技进展,2007,27(4):50-54.
    [11]唐毅,吴持恭,周著.排沙漏斗三维涡流水流结构[J].水利学报,1999,11(4):56-60.
    [12]肖柏青,罗麟,周著,等.排沙漏斗流场的大涡模拟[J].四川大学学报(工程科学版),2010,42(3):30-35.
    [13]CHAPOKPOUR J,GHASEMZADEH F,FARHOUDI J.The numerical investigation on vortex flow behavior using FLOW-3D[J].Iranica Journal of Energy&Environment,2012,3(1):88-96.
    [14]邱秀云,侯杰,周著.排沙漏斗的流场特性及输沙机理[J].中国农村水利水电,1999(4):5-8+48.
    [15]肖柏青,戎贵文.排沙漏斗流场特性与排沙机理研究[J].水动力学研究与进展(A辑),2016,31(2):232-238.
    [16]邓宏荣.喀什一级电站排沙漏斗工程悬移质泥沙水文测验与分析[J].四川水利,2015,36(4):51-54.
    [17]屈百平,刘进步.泾惠渠排沙漏斗工程设计特点[J].陕西水利水电技术,2004(2):55-57+64.
    [18]HIRT C W,NICHOLS B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1):201-225.
    [19]李琳,邱秀云,龚守远,等.浑水水力分离清水装置弱旋流场特性研究[J].水动力学研究与进展,2007,22(4):520-528.
    [20]黄思,邹文朗,周锦驹,等.基于DPM模型的离心泵非定常固液两相流及磨损计算[J](英文).机床与液压,2016,44(6):103-106.
    [21]YANG Haoming,ZHU D Z,LI Lin.Numerical modeling on sediment capture in catch basins.[J].Water Science&Technology,2018,775(5):wst2018009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700