青海高原致灾性对流天气时空分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Distribution Characteristics of Disastrous Convective Weather over the Qinghai Plateau
  • 作者:朱平 ; 俞小鼎 ; 王振会 ; 肖建设
  • 英文作者:ZHU Ping;YU Xiaoding;WANG Zhenhui;XIAO Jianshe;Qinghai Provincial Meteorological Observatory;School of Atmospheric Physics, Nanjing University of Information Science & Technology;CMA Training Center;Meteorological Institute of Qinghai Province;
  • 关键词:青海高原 ; 致灾性对流 ; 地形 ; 时空分布
  • 英文关键词:Qinghai Plateau;;disastrous convection;;topography;;temporal and spatial distribution
  • 中文刊名:GSQX
  • 英文刊名:Journal of Arid Meteorology
  • 机构:青海省气象台;南京信息工程大学大气物理学院;中国气象局干部培训学院;青海省气象科学研究所;
  • 出版日期:2019-06-30
  • 出版单位:干旱气象
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(41865006和41761078);; 青海省气象局重点项目共同资助
  • 语种:中文;
  • 页:GSQX201903004
  • 页数:7
  • CN:03
  • ISSN:62-1175/P
  • 分类号:27-33
摘要
利用2005—2016年青海高原地面观测、灾情和卫星云图等资料,对青海高原致灾性对流天气进行筛选和分类,在此基础上分析了各类致灾性对流天气的时空分布特征及与地形的关系。结果表明:(1)青海高原致灾性对流主要有雷暴、短时强降水、冰雹以及混合类四种,集中分布于高原东部。(2)地形对致灾性对流的落区、频次和强度起关键作用。雷暴多产生于山区,短时强降水和冰雹主要产生在迎风坡、河谷和地势较开阔的低地。其中,青东农区以混合类和冰雹居多,青南牧区以混合类居多,环湖与祁连地区和柴达木盆地以短时强降水居多。(3)近12 a青海高原致灾性对流整体呈波动式减少,2005—2010年(前期)致灾性对流日数和次数较多,2011—2016年(后期)显著减少,但不同类型年际变化特征略有差异。其中,冰雹和雷暴日数前期较大,后期显著减少;混合类和短时强降水日数无明显变化趋势,但前者年际波动幅度较后者大。(4)致灾性对流主要产生于5—9月,各类型均呈现典型的单峰型月分布,混合类和冰雹日数及次数的峰值均在8月,雷暴日数和次数的峰值均在6月,而短时强降水日数和次数的峰值分别在8月、7月。(5)致灾性对流集中产生于13:00至次日01:00,高峰时段(16:00—20:00)以冰雹和混合类居多,而夜间时段以短时强降水居多。
        Based on the conventional observation data from ground weather stations, disaster situation and cloud images in the Qinghai Plateau from 2005 to 2016, the disastrous convective weathers were selected and classified. And on this basis the temporal and spatial distribution characteristics of disastrous convection with different types and their relationship with topography were analyzed. The results are as follows:(1) The disastrous convection in the Qinghai Plateau mainly included thunderstorm, short-time heavy precipitation, hail and mixed type during 2005-2016, and they distributed mostly in the east of the Qinghai Plateau.(2) Topography played a key role in the location, frequency and intensity of disastrous convection. Thunderstorms mostly occurred in mountainous areas, the short-time heavy precipitation and hail mainly occurred in windward slopes, river valleys and open lowlands. The predominant disastrous convections were the mixed type and hail in agricultural area of eastern Qinghai, the mixed in pastoral area of southern Qinghai and the short-time heavy precipitation in Qinghai Lake, Qilian Mountains and Qaidam Basin, respectively.(3) The disastrous convection over the Qinghai Plateau decreased in a fluctuating tendency during 2005-2016. The days and frequencies of disastrous convection were more from 2005 to 2010(the earlier stage), and they decreased significantly from 2011 to 2016(the later stage), while the annual variations characteristics of disastrous convection with different types were slightly different. The days of hail and thunderstorm were larger in the early stage and decreased significantly in the later stage. The change trend of mixed type and short-time heavy precipitation days wasn't obvious, but the annual fluctuant range of the former was larger than that of the latter.(4) Disastrous convection mainly occurred from May to September in the Qinghai Plateau, and the monthly days and frequencies of disastrous convection with different types showed a typical single peak distribution. The peak of hail and mixed type days and frequencies was in August and that of thunderstorm days and frequencies was in June, while the peak of short-time heavy precipitation days and frequencies was in August and July, respectively.(5) Disastrous convection concentrated from 13:00 pm to 01:00 am in the next day, the hail and mixed types dominated at the peak stage(16:00-20:00), while the short-time heavy precipitation dominated in the nighttime.
引文
[1] 李生辰,徐亮,郭英香,等.近34 a青藏高原年降水变化及其分区[J].中国沙漠,2007,27(2):307-314.
    [2] 姚宜斌,雷祥旭,张良,等.青藏高原地区1979—2014年大气可降水量和地表温度时空变化特征分析[J].科学通报,2016,61(13):1462-1477.
    [3] 郝振纯,江微娟,鞠琴,等.青藏高原河源区气候变化特征分析[J].冰川冻土,2010,32(6):1130-1135.
    [4] 李林,时兴合,申红艳,等.1960—2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J].自然资源学报,2011,26(9):1566-1574.
    [5] 朱平,田成娟.青海东部一次强对流天气的多普勒雷达特征分析[J].干旱气象,2011,29(3):336-342.
    [6] 朱平,俞小鼎.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象,2019,38(1):1-13.
    [7] 苏永玲,马秀梅,马元仓,等.高空冷涡和副高背景下青海冰雹特征对比分析[J].沙漠与绿洲气象,2018,12(4):22-29.
    [8] 燕振宁,马学谦.青海高原不同地区大气水汽含量对比分析[J].干旱气象,2018,36(3):365-372.
    [9] 朱平,张国庆.祁连山南麓湟水河谷地形云雷达回波特征[J].干旱区研究,2015,32(3):551-564.
    [10] 刘晓燕,王玉娟,王军,等.青海东部雷电活动环境特征及其预报[J].干旱气象,2018,36(4):676-683.
    [11] 刘蓉娜,张国庆,肖宏斌,等.湟水河谷夏季云和降水的日变化特征[J].干旱区研究,2010,27(1):135-141.
    [12] 周万福,张国庆,肖红斌,等.2005年雨季“三江源”地区对流云的特征分析[J].高原气象,2008,27(3):695-700.
    [13] 白淑英,史建桥,相栋,等.近50年青海降水时空格局变化[J].干旱区资源与环境,2013,27(6):148-153.
    [14] 孔尚成,戴升,王敏.1961—2013年青海高原雷暴日数及雷电灾害变化特征研究[J].冰川冻土,2015,37(4):888-897.
    [15] 张馨月,邵晓华,王明常,等.青海省近50年极端降水事件时空分布特征[J].世界地质,2017,36(3):1015-1023.
    [16] 王芝兰,陈录元,尚可政,等.青海强对流天气时空特征及其对气候变暖的响应[J].干旱气象,2011,29(4):439-445.
    [17] 刘彩红,王黎俊,王振宇,等.基于灾损评估的青海高原冰雹灾害风险区划[J].冰川冻土,2012,34(6):1409-1415.
    [18] BORGA M,VIZZACCARO A.On the interpolation of hydrologic variables:formal equivalence of multiquadratic surface fitting and Kriging[J].Journal of Hydrology,1997,195(1/4):160-171.
    [19] DIRKS K N,HAY J E,STOW C D,et al.High-resolution studies of rainfall on Norfolk Island:PartⅡ:interpolation of rainfall data[J].Journal of Hydrology,1998,208(3/4):187-193.
    [20] 刘光孟,汪云甲,张海荣,等.空间分析中几种插值方法的比较研究[J].地理信息世界,2011(3):41-45.
    [21] 石朋,芮孝芳.降雨空间插值方法的比较与改进[J].河海大学学报(自然科学版),2005,33(4):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700