微波膨化即食金枪鱼皮工艺条件的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of technological conditions for microwave puffing ready-to-eat Thunnus alalunga skin
  • 作者:余娟 ; 吴杨阳 ; 章佳佳 ; 蔡婷菡 ; 方旭波 ; 陈小娥 ; 江旭华
  • 英文作者:YU Juan;WU Yang-yang;ZHANG Jia-jia;CAI Ting-han;FANG Xu-bo;CHEN Xiao-e;JIANG Xu-hua;School of Food and Pharmacy,Zhejiang Ocean University;Joint Key Laboratory of Aquatic Products Processing Technology of Zhejiang Province;Zhoushan Fudan Tourism Co.,Ltd.;
  • 关键词:金枪鱼皮 ; 响应面法 ; 微波膨化
  • 英文关键词:Thunnus alalunga skin;;response surface methodology;;microwave puffing
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:浙江海洋大学食品与医药学院;浙江省水产品加工技术研究联合重点实验室;浙江富丹旅游食品有限公司;
  • 出版日期:2017-09-20 15:42
  • 出版单位:食品工业科技
  • 年:2018
  • 期:v.39;No.395
  • 基金:国家级大学生创新创业训练计划项目(201610340006);; 浙江省科技厅项目(2015C32034)
  • 语种:中文;
  • 页:SPKJ201803028
  • 页数:7
  • CN:03
  • ISSN:11-1759/TS
  • 分类号:142-148
摘要
为研究微波膨化即食金枪鱼皮的最佳工艺,本文通过初始水分含量、水分均衡时间、微波膨化时间测定了金枪鱼皮的膨化度,并采用响应面法(response surface method)确定鱼皮微波膨化工艺最优条件。在此基础上,利用正交实验对金枪鱼皮的增脆工艺参数(热水烫漂时间、冰水急冷时间和氯化钾溶液质量浓度)进行优化,同时采用扫描电镜观察金枪鱼皮产品的组织结构,确定即食金枪鱼皮的最佳增脆工艺。结果表明,即食金枪鱼皮的膨化工艺最优条件为初始水分含量21.8%、水分均衡时间9.1 h、微波功率700 W、微波时间4 min,在此条件下,膨化度为(1.24±0.03);增脆最佳工艺为热水烫漂时间为2 min、冰水急冷时间2 min、氯化钾溶液质量浓度5.0 g/L,在该条件下制备微波膨化金枪鱼皮的破裂力为(41.17±0.28)N,膨化度为(1.25±0.02),产品质地疏松,口感酥脆;通过理化分析和扫面电镜观察发现,增脆后产品鱼皮的膨化度和酥脆度显著提高,并呈现纤维组织明显膨大与细微破断处增多。由此可知,采用适宜的微波膨化和增脆工艺加工金枪鱼皮,可制得一款质地和口感俱佳的即食金枪鱼皮产品。
        In order to investigate the optimal process of puffed ready-to-eat tuna skin,the influence of initial water content,water equilibrium time and microwave puffing time on the expansion degree of tuna skin was analyzed.Response surface method( RSM) was applied to optimize the process of microwave puffing tuna skin.Then the effect of different embrittlement conditions,such as blanching time,cooling time and mass concentration of muriate potash,on the crispness of tuna skin was investigated by orthogonal experiment.The tissue structure of tuna skin was characterized by scanning electron microscope( SEM). The results showed that the optimal puffing conditions were initial water content of 21.8%,water equilibrium time for 9.1 h,microwave power for 700 W,microwave time for 4 min. The expansion ratio of tuna fish was( 1.24 ± 0.03) under these conditions.Meanwhile,the optimal embrittlement conditions were blanching time for 2 min,cooling time for 2 min and mass concentration of muriate potash for 5.0 g/L. The brittleness of microwave puffing tuna fish could be reached at( 41.17 ± 0.28) N and the expansion ratio of tuna fish was( 1.25 ± 0.02).The analysis of physicochemical and SEM showed that the expansion ratio and crispiness of fish skin were remarkably improved,the obvious enlargement of fibrous tissue and the increase of slight fracture in fish skin were also observed after embrittlement.Thus it can be seen,the process of puffing and embrittlement for tuna skin was developed for obtaining high quality and good taste ready-to-eat tuna skin
引文
[1]徐慧文,谢晶.金枪鱼保鲜方法及其鲜度评价指标研究进展[J].食品科学,2014,35(7):258-263.
    [2]徐坤华,赵巧灵,廖明涛,等.金枪鱼质构特性与感官评价相关性研究[J].中国食品学报,2014,14(12):190-197.
    [3]Nakamura Y N,Ando M,Seoka M,et al.Changes of proximate and fatty acid compositions of the dorsal and ventral ordinary muscles of the full-cycle cultured Pacific bluefin tuna Thunnus orientalis with the growth[J].Food Chemistry,2007,103(1):234-241.
    [4]王国强,何力,贾鲁君,等.长鳍金枪鱼鱼皮胶原蛋白肽制备工艺的研究[J].食品研究与开发,2016,37(7):105-110.
    [5]赵小惠,吴丽娜,杨宇杰,等.菌酶协同处理金枪鱼暗色肉制备饲用肽的研究[J].中国饲料,2016(10):19-22,26.
    [6]Bougatef A,Balti R,Haddar A,et al.Protein hydrolysates from Bluefin Tuna(Thunnus thynnus)heads as influenced by the extent of enzymatic hydrolysis[J].Biotechnology and Bioprocess Engineering,2012,17(4):841-852.
    [7]韩霜,马良,杨晖,等.大目金枪鱼皮明胶的理化性质及结构研究[J].食品科学,2017(10):1-10.
    [8]王雨生,冷云,陈海华,等.黄鳍金枪鱼皮胶原肽酶解工艺及抗氧化活性研究[J].中国食品学报,2015,15(2):72-78.
    [9]颜梦婷,刘施琳,朱丰,等.休闲食品加工技术研究进展[J].食品安全质量检测学报,2015,6(10):4013-4018.
    [10]张华,李晓东,邵红,等.酪蛋白与大豆蛋白双蛋白微波膨化模拟干酪食品[J].中国食品学报,2017,17(1):84-91.
    [11]李清明,谭兴和,申双贵,等.食品微波膨化技术研究进展[J].包装与食品机械,2003,21(4):13-16.
    [12]池建伟,魏振承,徐志宏,等.微波技术在食品加工中的应用与发展[J].保鲜与加工,2003,3(1):7-9.
    [13]Liu C H,Zheng X Z,Jia S H,et al.Comparative experiment on hot-air and microwave-vacuum drying and puffing of blue honeysuckle snack.[J].International Journal of Food Engineering,2009,5(4):64-67.
    [14]Liu C H,Zheng X Z,Shi J,et al.Optimising microwave vacuum puffing for blue honeysuckle snacks[J].International Journal of Food Science&Technology,2010,45(3):506-511.
    [15]Krulis M,Kuhnert S,Leiker M,et al.Influence of energy input and initial moisture on physical properties of microwavevacuum dried strawberries[J].European Food Research and Technology,2005,221(6):803-808.
    [16]徐圣兰,石彦国,李春阳.微波膨化南瓜脆片的工艺优化[J].食品工业科技,2011,32(5):279-281.
    [17]梁华,赵胜娟,唐浩国,等.微波膨化猪皮小食品的工艺研究[J].食品研究与开发,2013,34(24):123-126.
    [18]汪兰,付晓燕,史兆龙,等.微波膨化淡水鱼糜脆片的工艺[J].食品与生物技术学报,2016,35(10):1045-1052.
    [19]朱道正.真空微波膨化鸭胸肉产品的研究与开发[D].南京:南京师范大学,2016.
    [20]卫生部.食品中水分的测定:GB 5009.3-2010[S].北京:中国标准出版社,2010.
    [21]刘成海.黑加仑果片微波真空膨化工艺及品质研究[D].哈尔滨:东北农业大学,2010.
    [22]焦妍津.利用蓝莓果渣生产挤压膨化食品的工艺研究[D].青岛:中国海洋大学,2015.
    [23]邱莲莲,谢超.鮟鱇鱼皮微波膨化休闲食品的工艺研究[J].肉类研究,2009(1):12-13.
    [24]王琴,白卫东,粱红,等.微波膨化银杏脆片的工艺研究[J].食品工业科技,2002,23(6):50-51.
    [25]李国胜,王苑珍,等.微波膨化菠萝蜜混合脆片的加工工艺研究[J].北方园艺,2014(1):136-139.
    [26]孙月娥,王卫东,戴照琪.微波膨化再造型黑洋葱紫山药平菇营养脆片的工艺研究[J].食品工业,2016,37(6):32-35.
    [27]王卫东,杨毅,刘全德,等.微波膨化猕猴桃脆片工艺的优化[J].食品工业科技,2014,35(20):299-302.
    [28]王丽虹,陈燕,吕峰.冷藏调理即食鲨鱼皮增脆工艺研究[J].江西食品工业,2011(1):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700