六种农作物叶保卫细胞形态特征对不同入侵地土荆芥挥发物胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Morphological characteristics of leaf guard cells in six crops in response to the volatile stress of Chenopodium ambrosioides L. from different invaded habitats
  • 作者:黄素 ; 马丹炜 ; 鲁昕 ; 张红
  • 英文作者:HUANG Su;MA Danwei;LU Xin;ZHANG Hong;College of Life Sciences, Sichuan Normal University;Sichuan Entry-Exit Inspection and Quarantine Bureau;
  • 关键词:土荆芥 ; 环境差异 ; 化感胁迫 ; 保卫细胞 ; 细胞毒性
  • 英文关键词:Chenopodium ambrosioides L.;;different invaded habitats;;allelopathy;;guard cells;;cytotoxicity
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:四川师范大学生命科学学院;四川出入境检验检疫局;
  • 出版日期:2018-12-21 16:42
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:四川省应用基础研究重点项目(2017JY0017);; 国家自然基金项目(31370549);; 四川省教育厅一般项目(16ZB0058);; 四川省高校重点实验室开放项目(SCYZ201410)
  • 语种:中文;
  • 页:STXB201905004
  • 页数:11
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:37-47
摘要
选择两个环境条件差异明显的土荆芥(Chenopodium ambrosioides L.)入侵地(四川成都和贵州安顺)为对象,以其入侵农田中6种农作物为受体,分析了两地土荆芥挥发油及其主要成分α-萜品烯和对伞花素对叶表皮保卫细胞活性和核结构的影响差异。结果表明:两地挥发油成分中,含量最多的成分均为α-萜品烯和对伞花素,成都植株二者的含量分别为21.07%和25.88%,安顺的分别为42.11%和24.04%;经挥发油、对伞花素、α-萜品烯、对伞花素+α-萜品烯处理后,保卫细胞活性下降,细胞核形态发生变化,除个别低剂量组(2μL)对保卫细胞无显著毒性外,各处理组毒性效应随处理浓度增加而显著升高(P<0.05),当剂量为10μL时毒性效应最大,保卫细胞的最高死亡率达到93.85%,最高核畸变率达到81.16%;6种农作物保卫细胞对土荆芥挥发物的敏感程度由大到小依次为荞麦(Fagopyrum esculentum Moench.)、豌豆(Pisum sativum Linn.)、蚕豆(Vicia faba L.)、韭(Allium tuberosum Rottl.ex Spreng.)、花生(Arachis hypogaea Linn.)、白菜(Brassica campestris L.);细胞毒性表现为安顺挥发油大于成都挥发油、α-萜品烯大于对伞花素,对伞花素+α-萜品烯混合物的细胞毒性与α-萜品烯所占比例呈正相关。上述结果表明,土荆芥挥发物破坏了保卫细胞结构。入侵地环境较差时,土荆芥增加释放细胞毒性较大的化感物质。
        Chengdu City(Sichuan Province) and Anshun City(Guizhou Province) are the regions that an invasive plant, Chenopodium ambrosioides L., invades very seriously in China. Chengdu City is located in the Sichuan Basin with a pleasant climate and superior hydrothermal conditions, but Anshun City is located in the Yunnan-Guizhou Plateau with karst land feature, thin soil, high altitude, and frequent drought. To explore the differences in the allelopathy of C. ambrosioides in different habitats, the C. ambrosioides plants grown in Chengdu and Anshun cities were selected as research objects because of their obvious differences in environmental characteristics. The volatile oils of the C. ambrosioides plants from Chengdu and Anshun were extracted by steam distillation, and their yields were 3.173 and 4.820 g/kg, respectively. The analysis results of gas chromatography-mass spectrometry(GC-MS) analysis showed that the C. ambrosioides volatile oils from Chengdu and Anshun contained 16 and 25 compounds, respectively, and α-terpinene and cymene were their common components. The concentrations of α-terpinene and cymene were determined based on their contents in the volatile oils from both cities. In this study, we used six receptor plant species, including Vicia faba L., Arachis hypogaea L., Allium tuberosum Rottl. ex Spreng., Fagopyrum esculentum Moench, Pisum sativum L., and Brassica campestris L., which are widely grown in the farmlands invaded by C. ambrosioides. These receptor plants were separately treated with eight treatments, including the treatments with the C. ambrosioides volatile oils from both cities and with α-terpinene, cymene, and α-terpinene+cymene extracted from the volatile oils from both cities. The activities and nuclear structures of leaf stoma guard cells were examined by using the epidermal strip method. The results showed that these cells had nuclear aberrations, including nuclear deformities, nuclear pyknosis, and nuclear translocations. Moreover, the stoma guard cell activities were significantly decreased(P<0.05) or even completely absent under the eight treatments, and these effects became more significant with an increase in treatment concentrations, and the maximum mortality and nuclear aberration rate of stoma guard cells were 93.85% and 81.16%, respectively. Among the six crop plants tested, F. esculentum had the strongest allelopathic effect, followed by P. sativum, V. faba, A. tuberosum, A. hypogaea, and finally B. campestris, according to their sensitivity to C. ambrosioides volatile oil, α-terpinene, and cymene. In this study, the cytotoxicity of the volatile oil of C. ambrosioides from Anshun was greater than that from Chengdu, and the cytotoxicity of α-terpinene was greater than that of cymene. The higher the proportion of α-terpinene in the α-terpinene+cymene solutions, the stronger the cytotoxicity they exerted. These results suggested that the allelochemicals of C. ambrosioides damaged the stoma guard cell structures of receptor plants, and when C. ambrosioides invades the habitats with relatively poor environmental conditions, it releases increased amounts of allelopathic chemicals in its surroundings for its competitive advantages.
引文
[1] Callaway R M, Ridenour W M. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2004, 2(8): 436- 443.
    [2] 卢志军, 马克平. 地形因素对外来入侵种紫茎泽兰的影响. 植物生态学报, 2004, 28(6): 761- 767.
    [3] 于兴军, 于丹, 马克平. 不同生境条件下紫茎泽兰化感作用的变化与入侵力关系的研究. 植物生态学报, 2004, 28(6): 773- 780.
    [4] 徐海根, 强胜. 中国外来入侵物种编目. 北京: 中国环境科学出版社, 2004: 91- 92.
    [5] Chen B, Zhou J, Gou X, Ma D W, Wang Y N, Hu Z L, He Y Q. Volatiles from Chenopodium ambrosioides L. induce the oxidative damage in maize (Zea mays L.) radicles. Allelopathy Journal, 2016, 38(2): 171- 181.
    [6] 周健, 王亚男, 马丹炜, 黄素, 辛文媛, 张红. 土荆芥挥发性化感物质诱导蚕豆保卫细胞死亡及信号调节. 生态学报, 2017, 37(17): 5713- 5721.
    [7] 胡忠良, 王亚男, 马丹炜, 陈斌, 何亚强, 周健. 玉米根边缘细胞exDNA和胞外蛋白对土荆芥化感胁迫的缓解效应. 中国农业科学, 2015, 48(10): 1962- 1970.
    [8] Li J, He Y Q, Ma D W, He B, Wang Y N, Chen B. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and Caspase-dependent apoptosis signaling pathways in receptor plant cells. Plant and Soil, 2018, 425(1/2): 297- 308.
    [9] Jiménez-Osornio F M V Z J, Kumamoto J, Wasser C. Allelopathic activity of Chenopodium ambrosioides L. Biochemical Systematics and Ecology, 1996, 24(3): 195- 205.
    [10] 孔垂华, 徐涛, 胡飞, 黄寿山. 环境胁迫下植物的化感作用及其诱导机制. 生态学报, 2000, 20(5): 849- 854.
    [11] Avissar R, Avissar P, Mahrer Y, Bravdo B A. A model to simulate response of plant stomata to environmental conditions. Agricultural and Forest Meteorology, 1985, 34(1): 21- 29.
    [12] Singh H P, Kaur S, Mittal S, Batish D R, Kohli R K. Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. Journal of Chemical Ecology, 2009, 35(2): 154- 162.
    [13] Catola S, Marino G, Emiliani G, Huseynova T, Musayev M, Akparov Z, Maserti B E. Physiological and metabolomic analysis of Punica granatum(L.) under drought stress. Planta, 2016, 243(2): 441- 449.
    [14] 马丹炜, 王万军. 细胞生物学实验教程. 北京: 科学出版社, 2010: 24- 26.
    [15] Williamson G B, Richardson D. Bioassays for allelopathy: measuring treatment responses with independent controls. Journal of Chemical Ecology, 1988, 14(1): 181- 187.
    [16] 张茂新, 凌冰, 孔垂华, 赵辉, 庞雄飞. 薇甘菊挥发油的化感潜力. 应用生态学报, 2002, 13(10): 1300- 1302.
    [17] 曾波, 钟章成. 四川大头茶黄酮类化合物的聚酰胺薄膜层析分析. 植物生态学报, 1997, 21(1): 90- 96.
    [18] 曾任森, 骆世明, 石木标. 营养和环境条件对日本曲霉化感作用的影响. 华南农业大学学报(自然科学版), 2003, 24(1): 42- 46.
    [19] Cavalli J F, Tomi F, Bernardini A F, Casanova J. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound. Phytochemical Analysis, 2004, 15(5): 275- 279.
    [20] Owolabi M S, Lajide L, Oladimeji M O, Setzer W N, Palazzo M C, Olowu R A, Ogundajo A. Volatile constituents and antibacterial screening of the essential oil of Chenopodium ambrosioides L. growing in Nigeria. Natural Product Communications, 2009, 4(7): 989- 992.
    [21] Arag?o F B, Palmieri M J, Ferreira A, Costa A V, Queiroz V T, Pinheiro P F, Andrade-Vieira L F. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on Lactuca sativa L. Allelopathy Journal, 2015, 35(2): 259- 272.
    [22] Babula P, Adam V, Kizek R, Sladk. Naphthoquinones as allelochemical triggers of programmed cell death. Environmental and Experimental Botany, 2009, 65(2/3): 330- 337.
    [23] Yang G Q, Wan F H, Guo J Y, Liu W X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biology and Management, 2011, 11(3): 152- 159.
    [24] 徐郑, 胡庭兴, 李仲彬, 陈洪, 王茜, 胡红玲. 不同生境条件下核桃凋落叶次生代谢物质的差异及其分解初期对小白菜光合生理特性的影响. 生态学报, 2015, 35(15): 5147- 5156.
    [25] Chapin III F S. New cog in the nitrogen cycle. Nature, 1995, 377(6546): 199- 200.
    [26] Northup R R, Yu Z S, Dahlgren R A, Vogt K A. Polyphenol control of nitrogen release from pine litter. Nature, 1995, 377(6546): 227.
    [27] 钟宇, 张健, 杨万勤, 吴福忠, 冯茂松, 陈小红. 不同土壤水分条件下生长的巨桉对紫花苜蓿的化感作用. 草业学报, 2009, 18(4): 81- 86.
    [28] 冯树林, 覃宗泉. 贵州省安顺地区农作物秸秆综合利用现状及对策. 畜牧与饲料科学, 2016, 37(3): 75- 77.
    [29] 叶帮, 邓世有, 方庆文. 安顺市干旱气候特征分析//贵州省气象学会2010年学术年会论文集. 贵州省气象学会学术年会, 2010: 60- 61.
    [30] 郝丽萍, 方之芳, 李子良, 刘泽全, 何金海. 成都市近50a气候年代际变化特征及其热岛效应. 气象科学, 2007, 27(6): 648- 654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700