羽叶铁线莲的分布区与生态位模型分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and niche modeling analysis of Clematis pinnata
  • 作者:吕汝丹 ; 何健 ; 刘慧杰 ; 姚敏 ; 程瑾 ; 谢磊
  • 英文作者:Lü Rudan;He Jian;Liu Huijie;Yao Min;Cheng Jin;Xie Lei;College of Nature Conservation,Beijing Forestry University;
  • 关键词:羽叶铁线莲 ; 最大熵模型 ; 潜在分布区 ; 适宜性评价
  • 英文关键词:Clematis pinnata;;MaxEnt model;;potential distribution area;;habitat assessment
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学自然保护区学院;
  • 出版日期:2019-02-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:北京市自然科学基金项目(5182016);; 国家自然科学基金项目(31670207)
  • 语种:中文;
  • 页:BJLY201902008
  • 页数:10
  • CN:02
  • ISSN:11-1932/S
  • 分类号:74-83
摘要
【目的】羽叶铁线莲为直立半灌木或藤本植物,是分布于我国北京、天津、河北及辽宁一带的特有种。由于羽叶铁线莲在形态上与其他同域分布的铁线莲属植物易发生混淆,在野外调查过程中往往被人忽视,因而相关研究比较缺乏。【方法】本研究在前期分类学修订和大量野外调查的基础上,采用最大熵生态位模型(MaxEnt)与地理信息系统(Arc GIS)方法对该物种的潜在分布区和适宜等级进行了预测。我们通过大量标本研究和考证,确定了羽叶铁线莲22个标本分布点,并明确了黑龙江没有羽叶铁线莲标本记录。【结果】在准确统计分布记录基础上,生态位模型分析结果表明羽叶铁线莲最适生地区集中在北京、河北北部、天津北部和辽宁西南部地区,且最适生地区面积非常狭小(36 137. 62 km2)。山西省目前虽然没有羽叶铁线莲分布记录,但是存在着较大面积的适生分布区。ROC曲线的AUC=0. 995,表明本研究结果预测可信度非常高。影响羽叶铁线莲分布区的影响因子主要有降水季节性(贡献率为39. 6%)、平均年温差(14. 5%)、海拔(14. 4%)、最暖季节降水量(11. 3%)、降水最少季节降水量(9. 5%)等。羽叶铁线莲的最适区的环境参数为:降水季节性变异126. 78,平均年温差42. 41℃,海拔372. 04 m,最暖季节降水量436. 67 mm,降水最少季节降水量11. 59 mm。【结论】羽叶铁线莲属于狭域分布种,主要受到降水季节性、平均年温差、海拔、最暖季节降水量、降水最少季节降水量为最重要的影响因子,根据国际自然及自然资源保护联盟(IUCN)标准,属于易危等级,应该加以栽培和迁地保护。此外我们认为用于生态位模型分析的分布点记录应经过严格的分类学鉴定以确保分析结果的准确性。
        [Objective]Clematis pinnata,a sub-shrub or vine,is restricted to small areas of northern China,including Beijing, Hebei Province, Tianjin of northern China, and Liaoning Province of northeastern China. Due to its ambiguous morphological characters,this species often does not attract attention and there have been very few studies on this species. [Method]In this study,we predicted the potential distribution area and suitable distribution habitat of this species using MaxEnt model and ArcGIS technique. We carefully verified 22 specimen localities of C. pinnata and recognized that Harbin is not a distribution site of this species. [Result] MaxEnt analysis showed that the most suitable area of C.pinnata was concentrated in Hebei,Beijing,Tianjin,and adjacent area of Liaoning Province. ShanxiProvince had a vast suitable area for C. pinnata,although there were no records of this species in Shanxi Province. The AUC of the ROC curve was 0. 995,showing a high precision of the prediction analysis.The key environmental factors determining the potential distribution were precipitation seasonality( the contribution rate,39. 6%),temperature annual range( 14. 5%),altitude( 14. 4%),precipitation of the warmest quarter( 11. 3%),precipitation of driest quarter( 9. 5%). Those environmental variables in the most suitable areas were calculated as precipitation seasonality 126. 78,temperature annual range42. 41℃,altitude 372. 04 m,precipitation of the warmest quarter 436. 67 mm,precipitation of the driest quarter 11. 59 mm. [Conclusion]Clematis pinnata is a narrowly distributed species,mainly influenced by the above mentioned ecological factors. According to IUCN standard,it belongs to the grade VU( vulnerable). The species should be protected using ex-situ conservation method. Furthermore,we propose that distribution records of the organisms using for MaxEnt analysis should be strictly identified to verify the accuracy of the results.
引文
[1]刘建全.“整合物种概念”和“分化路上的物种”[J].生物多样性,2016,24(9):1004-1008.Liu J Q.“The integrative species concept”and “species on the speciation way”[J]. Biodiversity Science,2016,24(9):1004-1008.
    [2] Phillips S J,Dudík M. Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation[J].Ecography,2008,31(2):161--175.
    [3] Kumar S,Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology and the Natural Environment,2009,1(4):94--98.
    [4] Diniz-Filho J A F,Terribile L C,Cruz M J R D,et al. Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence[J]. Global Ecology and Biogeography,2010,19(6):916-926.
    [5]朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98.Zhu G P,Liu G Q,Bu W J,et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science,2013,21(1):90--98.
    [6]李一琳,丁长青.基于GIS和Max Ent技术对濒危物种褐马鸡的保护空缺分析[J].北京林业大学学报,2016,38(11):34-41.Li Y L,Ding C Q. Reserve gap analysis of endangered brown eared pheasant(Crossoptilon mantchuricum)through GIS and Max Ent technology[J]. Journal of Beijing Forestry University,2016,38(11):34--41.
    [7]张美珍.威灵仙组.中国植物志编委会.中国植物志:第28卷[M].北京:科学出版社,1980:180.Chang M C. Clematis Sect. Clematis. Flora reipublicae popularis sinicae:28th volume[M]. Beijing:Science Press,1980:180.
    [8] Wang W T,Bartholoew B. Clematis∥Wu Z Y,Raven P. Flora of China,vol. 6[M]. Beijing&St. Louis:Science Press&Missouri Botanical Garden Press,2001,6:97-165.
    [9] Xie L,Shi J H,Li L Q. Identity of Clematis tatarinowii and C.pinnata var. ternatifolia(Ranunculaceae)[J]. Annales Botanici Fennici,2005,42(4):305-308.
    [10] Wang W T,Xie L. A revision of Clematis sect. Tubulosae(Ranunculaceae)[J]. Acta Phytotaxonomica Sinica,2007,45(4):425-457.
    [11]乔慧捷,胡军华,黄继红.生态位模型的理论基础、发展方向与挑战[J].中国科学,2013,43(11):915-927.Qiao H J, Hu J H, Huang J H. Theoretical basis, future directions,and challenges for ecological niche models[J].Scientia Sinica,2013,43(11):915-927.
    [12] Hijmans R J,Cameron S E,Parra J L,et al. Very high resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology,2005,25(15):1965-1978.
    [13] Fischer G F,Nachtergaele S,Prieler H T,et al. Global agroecological zones assessment for agriculture[DS]. IIASA,Laxenburg,Austria and FAO,Rome,Italy,2008.
    [14] NeftalíS. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling,2011,222(8):1343-1346.
    [15] Moreno R,Zamora R,Molina J R,et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy(Maxent)[J]. Ecological Informatics,2011,6(6):364--370.
    [16] Hanley J A,Mcneil B J. The meaning and use of the area under a Receiver Operating Characteristic(ROC)curve[J]. Radiology,1982,143:29-36.
    [17] Licent E, Teilhard D C. Geological observations in northern Manchuria and Barga(Hailar)[J]. Bulletin of the Geological Society of China,1930,9(1):23-35.
    [18]卫奇,黄为龙.泥河湾盆地的科学开拓者[J].化石,2009(4):28-33.Wei Q,Huang W L. Pioneer scientists of Nihewan Basin[J].Fossil,2009(4):28-33.
    [19]卫奇.泥河湾盆地考证[J].文物春秋,2016,2016(2):3-11.Wei Q. Textual research of Nihewan Basin[J]. Historical Relics,2016(2):3--11.
    [20]王磊.桑志华与北疆博物院[J].自然科学博物馆研究,2016(3):87-92.Wang L. Sang Zhihua&The Northern Border Museum[J].Journal of Natural Science Museum Research,2016(3):87-92.
    [21]成胜泉.泥河湾研究大事记[J].河北北方学院学报(社会科学版),2016,51(增刊1):31--64.Cheng S Q. Memorabilia of Nihewan research[J]. Journal of Hebei North University(Social Science Edition),2016, 51(Suppl. 1):31-64.
    [22]陈蜜.从新生代研究室到地质学古生物学研究所:德日进在北京的科学活动[J].科学文化评论,2017,14(1):82-94.Chen M. From the cenozoic laboratory to the institute of geobiology,the scientific activities of Teilhard de Chardin in Beijing[J]. Science&Culture Review,2017,14(1):82-94.
    [23]张海龙.基于GARP生态位模型的珍稀植物桃儿七适生区与生境分析[J].江西农业学报,2013,25(7):112--115.Zhang H L. Analysis of suitable growth area and habitat of rare plant Sinopodophullum hexandrum based on GARP niche model[J]. Acta Agriculturae Jiangxi,2013,25(7):112--115.
    [24]王娟娟,曹博,白成科,等.基于Maxent和Arc GIS预测川贝母潜在分布及适宜性评价[J].植物研究,2014(5):642-649.Wang J J,Cao B,Bai C K,et al. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on Max Ent modeling and GIS[J]. Bulletin of Botanical Rasearch,2014(5):642--649.
    [25]车乐,曹博,白成科,等.基于Max Ent和Arc GIS对太白米的潜在分布预测及适宜性评价[J].生态学杂志,2014,33(6):1623-1628.Che L,Cao B,Bai C K,et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on Max Ent and Arc GIS[J]. Chinese Journal of Ecology,2014,33(6):1623-1628.
    [26] Swets J. Measuring the accuracy of diagnostic systems[J].Science,1988,240:1285--1293.
    [27]张颖,李君,林蔚,等.基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J].应用生态学报,2011,22(11):2970-2976.Zhang Y,Li J,Lin W,et al. Prediction of potential distribution area of Erigeron philadelphicus in China based on Max Ent model[J]. Chinese Journal of Applied Ecology,2011,22(11):2970--2976.
    [28] Yang X Q,Kushwaha S P S,Saran S,et al. Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering,2013,51:83--87.
    [29]崔相艳,王文娟,杨小强,等.基于生态位模型预测野生油茶的潜在分布[J].生物多样性,2016,24(10):1117--1128.Cui X Y,Wang W J,Yang X Q,et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J].Biodiversity Science,2016,24(10):1117-1128.
    [30]张超,陈磊,田呈明,等.基于GARP和Max Ent的云杉矮槲寄生分布区的预测[J].北京林业大学学报,2016,38(5):23-32.Zhang C,Chen L,Tian C M,et al. Predicting the distribution of dwarf mistletoe(Arceuthobium sichuanense)with GARP and Max Ent models[J]. Journal of Beijing Forestry University,2016,38(5):23--32.
    [31]张春华,和菊,孙永玉,等.基于Max Ent模型的紫椿适生区预测[J].北京林业大学学报,2017,39(8):33--41.Zhang C H,He J,Sun Y Y,et al. Distributional change in suitable areas for Toona sureni based on Max Ent model[J].Journal of Beijing Forestry University,2017,39(8):33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700