微生物—矿物间半导体介导电子传递机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the Semiconductor-Mediated Electron Transfer Mechanism at Microbe-Mineral Interface
  • 作者:王莹 ; 刘同旭 ; 李芳柏
  • 英文作者:Wang Ying;Liu Tongxu;Li Fangbai;Guangdong Institute of Eco-Environmental and Soil Sciences;
  • 关键词:微生物 ; 半导体矿物 ; 胞外电子传递 ; 导带介导机制
  • 英文关键词:Microbe;;Semiconducting mineral;;Extracellular electron transfer;;Conduction band-mediated mechanism
  • 中文刊名:DXJZ
  • 英文刊名:Advances in Earth Science
  • 机构:广东省生态环境与土壤研究所;
  • 出版日期:2016-04-10
  • 出版单位:地球科学进展
  • 年:2016
  • 期:v.31;No.257
  • 基金:国家自然科学基金优秀青年科学基金项目“土壤化学”(编号:41522105)资助~~
  • 语种:中文;
  • 页:DXJZ201604002
  • 页数:10
  • CN:04
  • ISSN:62-1091/P
  • 分类号:16-25
摘要
矿物与微生物相互作用是地球表层系统中重要的生物地球化学过程,是联系不同圈层物质与能量交换的重要纽带,深刻地影响着一系列重要的地表过程,包括次生矿物的形成与演化、养分循环与污染物环境行为。在微生物—矿物的研究中,以往主要关注微生物的胞外电子传递和微生物介导的矿物溶解、沉淀、矿化等过程。由于矿物本身具有半导体性质,其在微生物胞外电子传递过程中扮演特殊的角色,这也为近期备受关注的微生物—矿物相互作用研究提供了一个崭新的视角。半导体矿物具有独特的能级结构和氧化还原性质,导致微生物—半导体矿物的相互作用机制差别很大。从热力学驱动和光能驱动2个方面分别阐述微生物—矿物间半导体导电机制的最新研究进展,并深入揭示其界面电子转移的机理。最后展望了微生物—半导体矿物相互作用的未来发展趋势。
        The interaction between minerals and microbes is an important biogeochemical process in the earth surface system,which links the transformation of substances and energy exchange in different earth spheres,and also affects a series of important earth surface processes,including the formation and evolution of secondary minerals,nutrient cycling and environmental behaviors of pollutants. The previous studies on microbe-mineral interaction focused on the extracellular electron transfer,and the microbe-mediated dissolution,precipitation,mineralization of minerals. Because of semiconductor properties of the mineral,it plays a special role in the process of microbial extracellular electron transfer,which can also help to understand the mutual interaction between microbe and mineral from a new angle of view. The unique energy level structures and redox properties of semiconducting mineral lead to a great difference in the mechanism of microbe and mineral interaction. The latest research progresses in the mechanism of microbe-mineral interaction mediated by semiconducting mineral were reviewed from two aspects: driven by thermodynamics and light energy. Finally,the future development trends of the interaction between microbes and semiconductor minerals were prospected.
引文
[1]Fredrickson J K,Zachara J M.Electron transfer at the microbemineral interface:A grand challenge in biogeochemistry[J].Geobiology,2008,6(3):245-253.
    [2]Melton E D,Swanner E D,Behrens S,et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J].Nature Reviews Microbiology,2014,12(12):797-808.
    [3]Borch T,Kretzschmar R,Kappler A,et al.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science&Technology,2009,44(1):15-23.
    [4]Chen M,Liu C,Li X,et al.Iron reduction coupled to reductive dechlorination in red soil:A review[J].Soil Science,2014,179(10/11):457-467.
    [5]Wu Jinshui,Ge Tida,Zhu Zhenke.Discussion on the key microbial process of carbon cycle and stoichiometric regulation mechanisms in paddy soils[J].Advances in Earth Science,2015,30(9):1 006-1 017.[吴金水,葛体达,祝贞科.稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J].地球科学进展,2015,30(9):1 006-1 017.]
    [6]Pan Genxing,Lu Haifei,Li Lianqing,et al.Soil carbon sequestration with bioactivity:A new emerging frontier for sustainable soil management[J].Advances in Earth Science,2015,30(8):940-951.[潘根兴,陆海飞,李恋卿,等.土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.]
    [7]Lovley D R,Chapelle F H,Phillips E J P.Fe(Ⅲ)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain[J].Geology,1990,18(10):954-957.
    [8]Myers C R,Nealson K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240(4 857):1 319-1 321.
    [9]Vargas M,Kashefi K,Blunt-Harris E L,et al.Microbiological evidence for Fe(Ⅲ)reduction on early Earth[J].Nature,1998,395(6 697):65-67.
    [10]Marsili E,Baron D B,Shikhare I D,et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008,105(10):3 968-3 973.
    [11]Reguera G,Mc Carthy K D,Mehta T,et al.Extracellular electron transfer via microbial nanowires[J].Nature,2005,435(7 045):1 098-1 101.
    [12]Wu Y,Liu T,Li X,et al.Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200:Electrochemical parameters and thermodynamics[J].Environmental Science&Technology,2014,48(16):9 306-9 314.
    [13]Lovley D R.Dissimilatory metal reduction[J].Annual Review of Microbiology,1993,47(3):263-290.
    [14]Melton E D,Swanner E D,Behrens S,et al.The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J].Nature Reviews Microbiology,2014,12(12):797-808.
    [15]Nakamura R,Kai F,Okamoto A,et al.Self-constructed electrically conductive bacterial networks[J].Angewandte Chemie International Edition,2009,48(3):508-511.
    [16]Nakamura R,Kai F,Okamoto A,et al.Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides[J].Journal of Materials Chemistry A,2013,1(16):5 148-5 157.
    [17]Liu T,Li X,Zhang W,et al.Fe(Ⅲ)oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J].Journal of Colloid and Interface Science,2014,423:25-32.
    [18]Zhang W,Li X,Liu T,et al.Enhanced nitrate reduction and current generation by Bacillus sp.in the presence of iron oxides[J].Journal of Soils and Sediments,2012,12(3):354-365.
    [19]Staniszewski A,Morris A J,Ito T,et al.Conduction band mediated electron transfer across nanocrystalline Ti O2surfaces[J].The Journal of Physical Chemistry B,2007,111(24):6 822-6 828.
    [20]Stromberg J R,Wnuk J D,Pinlac R A F,et al.Multielectron transfer at heme-functionalized nanocrystalline Ti O2:Reductive dechlorination of DDT and CCl4forms stable carbene compounds[J].Nano Letters,2006,6(6):1 284-1 286.
    [21]Xu Y,Schoonen M A A.The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J].American Mineralogist,2000,85(4):543-556.
    [22]Latta D E,Gorski C A,Scherer M M.Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling[J].Biochemical Society Transactions,2012,40(6):1 191.
    [23]Rosso K M,Yanina S V,Gorski C A,et al.Connecting observations of hematite(α-Fe2O3)growth catalyzed by Fe(Ⅱ)[J].Environmental Science&Technology,2009,44(1):61-67.
    [24]Yu J,Wang Y,Xiao W.Enhanced photoelectrocatalytic performance of Sn O2/Ti O2rutile composite films[J].Journal of Materials Chemistry A,2013,1(36):10 727-10 735.
    [25]Gauger T,Konhauser K,Kappler A.Protection of phototrophic iron(Ⅱ)-oxidizing bacteria from UV irradiation by biogenic iron(Ⅲ)minerals:Implications for early Archean banded iron formation[J].Geology,2015,43(12):1 067-1 070.
    [26]Phoenix V R,Konhauser K O,Adams D G,et al.Role of biomineralization as an ultraviolet shield:Implications for Archean life[J].Geology,2001,29(9):823-826.
    [27]Ng T W,Zhang L,Liu J,et al.Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-Ag Br[J].Water Research,2016,90:111-118.
    [28]Rtimi S,Pulgarin C,Sanjines R,et al.Preparation and mechanism of Cu-decorated Ti O2-Zr O2films showing accelerated bacterial inactivation[J].ACS Applied Materials&Interfaces,2015,7(23):12 832-12 839.
    [29]Bonnefond A,Gonzlez E,Asua J M,et al.New evidence for hybrid acrylic/Ti O2films inducing bacterial inactivation under low intensity simulated sunlight[J].Colloids and Surfaces B:Biointerfaces,2015,135:1-7.
    [30]Lu A,Li Y,Jin S,et al.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J].Nature Communications,2012,3:768,doi:10.1038/ncomms1768.
    [31]Li Y,Lu A H,Wang X,et al.Semiconducting mineral photocatalytic regeneration of Fe2+promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans[J].Acta Geologica Sinica,2013,87(3):761-766.
    [32]Sakimoto K K,Wong A B,Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J].Science,2016,351(6 268):74-77.
    [33]Zhou S,Tang J,Yuan Y.Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems[J].Bioelectrochemistry,2015,102:29-34.
    [34]Lu Anhuai,Li Yan,Jin Song.Interactions between semiconducting minerals and bacteria under light[J].Elements,2012,8(2):125-130.
    [35]Lu A H,Wang X,Li Y,et al.Mineral photoelectrons and their implications for the origin and early evolution of life on Earth[J].Science in China(Series D),2014,57(5):897-902.
    [36]Lu Anhuai,Li Yan,Wang Xin,et al.The photoelectron generation from semiconducting minerals and its effects in critical zone[J].Earth Science Frontiers,2014,21(3):256-264.[鲁安怀,李艳,王鑫,等.关键带中天然半导体矿物光电子的产生与作用[J].地学前缘,2014,21(3):256-264.]
    [37]Dong H L,Lu A H.Mineral-microbe interactions and implications for remediation[J].Elements,2012,8(2):95-100.
    [38]Villano M,Aulenta F,Ciucci C,et al.Bioelectrochemical reduction of CO2to CH4via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresource Technology,2010,101(9):3 085-3 090.
    [39]Hansel C M,Benner S G,Neiss J,et al.Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J].Geochimica et Cosmochimica Acta,2003,67(16):2 977-2 992.
    [40]Li F B,Li X M,Zhou S G,et al.Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J].Environmental Pollution,2010,158(5):1 733-1 740.
    [41]Li X M,Li Y T,Li F B,et al.Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds[J].Chinese Science Bulletin,2009,54(16):2 800-2 804.
    [42]Richardson D J,Fredrickson J K,Zachara J M.Electron transport at the microbe-mineral interface:A synthesis of current research challenges[J].Biochemical Society Transactions,2012,40(6):1 163-1 166.
    [43]Wu Yundang,Li Fangbai,Liu Tongxu.Mechanism of extracellular electron transfer among microbe-humus-mineral in soil:A review[J].Acta Pedologica Sinica,2016,(2):277-291.[吴云当,李芳柏,刘同旭.土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J].土壤学报,2016,(2):277-291.]
    [44]Feng C,Yue X,Li F,et al.Bio-current as an indicator for biogenic Fe(Ⅱ)generation driven by dissimilatory iron reducing bacteria[J].Biosensors and Bioelectronics,2013,39(1):51-56.
    [45]Handler R M,Beard B L,Johnson C M,et al.Atom exchange between aqueous Fe(Ⅱ)and goethite:An Fe isotope tracer study[J].Environmental Science&Technology,2009,43(4):1 102-1 107.
    [46]Yanina S V,Rosso K M.Linked reactivity at mineral-water interfaces through bulk crystal conduction[J].Science,2008,320(5 873):218-222.
    [47]Boland D D,Collins R N,Miller C J,et al.Effect of solution and solid-phase conditions on the Fe(Ⅱ)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J].Environmental Science&Technology,2014,48(10):5 477-5 485.
    [48]Li X,Liu T,Wang K,et al.Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina[J].Environmental Science&Technology,2015,49(3):1 392-1 399.
    [49]Aelterman P,Rabaey K,Pham H T,et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J].Environmental Science&Technology,2006,40(10):3 388-3 394.
    [50]Cheng S,Logan B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J].Electrochemistry Communications,2007,9(3):492-496.
    [51]Wang L,Su L,Chen H,et al.Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer[J].Materials Letters,2015,141:311-314,doi:10.1016/j.matlet.2014.11.21.
    [52]Peng X,Yu H,Wang X,et al.Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite[J].Journal of Power Sources,2013,223:94-99,doi:10.1016/j.jpowsour.2012.09.057.
    [53]Peng X,Yu H,Ai L,et al.Time behavior and capacitance analysis of nano-Fe3O4added microbial fuel cells[J].Bioresource Technology,2013,144:689-692,doi:10.1016/j.biortech.2013.07.037.
    [54]Kato S,Hashimoto K,Watanabe K.Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.[J].Microbes and Environments,2013,28(1):141-148.
    [55]Kato S,Nakamura R,Kai F,et al.Respiratory interactions of soil bacteria with(semi)conductive iron-oxide minerals[J].Environmental Microbiology,2010,12(12):3 114-3 123.
    [56]Nakamura R,Okamoto1 A,Tajima1 N,et al.Biological ironmonosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium[J].Chembiochem,2010,11(5):643-645.
    [57]Jiang X,Hu J,Lieber A M,et al.Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J].Nano Letters,2014,14(11):6 737-6 742.
    [58]Kondo K,Okamoto A,Hashimoto K,et al.Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J].Langmuir,2015,31(26):7 427-7 434.
    [59]White G F,Shi Z,Shi L,et al.Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ)minerals[J].Proceedings of the National Academy of Sciences,2013,110(16):6 346-6 351.
    [60]Feng C H,Li F B,Sun K W,et al.Understanding the role of Fe(Ⅲ)/Fe(Ⅱ)couple in mediating reductive transformation of2-nitrophenol in microbial fuel cells[J].Bioresource Technology,2011,102(2):1 131-1 136.
    [61]Cao F,Liu T X,Wu C Y,et al.Enhanced biotransformation of DDTs by an iron-and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt(AQDS)[J].Journal of Food and Agricultural Chemistry,2012,60(45):11 238-11 244.
    [62]Tao L,Zhu Z K,Li F B.Fe(Ⅱ)/Cu(Ⅱ)Interaction onα-Fe OOH,Kaolin and Ti O2for interfacial reactions of 2-nitrophenol reductive transformation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,425:92-98,doi:10.1016/j.colsurfa.2013.02.057.
    [63]Li F,Wang X,Li Y,et al.Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface[J].Journal of Colloid and Interface Science,2008,321(2):332-341.
    [64]Zhang W,Li X,Liu T,et al.Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,445:97-104,doi:10.1016/j.colsurfa.2014.01.023.
    [65]Liu T,Zhang W,Li X,et al.Kinetics of competitive reduction of nitrate and iron oxides by HS01[J].Soil Science Society of America Journal,2014,78(6):1 903-1 912.
    [66]Kouzuma A,Kato S,Watanabe K.Microbial interspecies interactions:Recent findings in syntrophic consortia[J].Frontiers in Microbiology,2015,6:477,doi:10.3389/fmicb.2015.00477.
    [67]Zhang Jie,Lu Yahai.A review of interspecies electron transfer in syntrophic-methanogenic associations[J].Microbiology China,2015,42(5):920-927.[张杰,陆雅海.互营氧化产甲烷微生物种间电子传递研究进展[J].微生物学通报,2015,42(5):920-927.]
    [68]Kato S,Hashimoto K,Watanabe K.Microbial interspecies electron transfer via electric currents through conductive minerals[J].Proceedings of the National Academy of Sciences,2012,109(25):10 042-10 046.
    [69]Kato S,Hashimoto K,Watanabe K.Methanogenesis facilitated by electric syntrophy via(semi)conductive iron-oxide minerals[J].Environmental Microbiology,2012,14(7):1 646-1 654.
    [70]Li H,Chang J,Liu P,et al.Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J].Environmental Microbiology,2015,17(5):1 533-1 547.
    [71]Viggi C C,Rossetti S,Fazi S,et al.Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J].Environmental Science&Technology,2014,48(13):7 536-7 543.
    [72]Liu F,Rotaru A E,Shrestha P M,et al.Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J].Environmental Microbiology,2015,17(3):648-655.
    [73]Beckmann S,Welte C,Li X,et al.Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation[J].Energy&Environmental Science,2016,doi:10.1039/c5ee03085d.
    [74]Bose A,Gardel E J,Vidoudez C,et al.Electron uptake by ironoxidizing phototrophic bacteria[J].Nature Communications,2014,5:3 391,doi:10.1038/ncomms4391.
    [75]Rutherford A W,Boussac A.Water photolysis in biology[J].Science,2004,303(5 665):1 782-1 784.
    [76]Herrero C,Lassalle-Kaiser B,Leibl W,et al.Artificial systems related to light driven electron transfer processes in PSⅡ[J].Coordination Chemistry Reviews,2008,252(3):456-468.
    [77]Beam J C,Le Blanc G,Gizzie E A,et al.Construction of a semiconductor-biological interface for solar energy conversion:P-doped silicon/photosystem I/zinc oxide[J].Langmuir,2015,31(36):10 002-10 007.
    [78]Ocakoglu K,Krupnik T,van den Bosch B,et al.Photosystem Ibased biophotovoltaics on nanostructured hematite[J].Advanced Functional Materials,2014,24(47):7 467-7 477.
    [79]Mershin A,Matsumoto K,Kaiser L,et al.Self-assembled photosystem-I biophotovoltaics on nanostructured Ti O2and Zn O[J].Scientific Reports,2012,2:234,doi:10.1038/srep00234.
    [80]Ochiai H,Shibata H,Sawa Y,et al.Properties of semiconductor electrodes coated with living films of cyanobacteria[J].Applied Biochemistry and Biotechnology,1983,8(4):289-303.
    [81]Ochiai H,Shibata H,Sawa Y,et al.Water biophotolysis system using cyanobacterial electrode[J].Chemistry Letters,1987,16(9):1 807-1 810.
    [82]Lu A,Li Y.Light fuel cell(LFC):A novel device for interpretation of microorganisms-involved mineral photochemical process[J].Geomicrobiology Journal,2012,29(3):236-243.
    [83]Sakimoto K K,Wong A B,Yang P.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J].Science,2016,351(6 268):74-77.
    [84]Eggleston C M,Khare N,Lovelace D M.Cytochrome c interaction with hematite(α-Fe2O3)surfaces[J].Journal of Electron Spectroscopy and Related Phenomena,2006,150(2):220-227.
    [85]Dias C F B,Araujo-Chaves J C,Mugnol K C U,et al.Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c[J].RSC Advances,2012,2(19):7 417-7 426.
    [86]Juliana C.Araujo-Chaves,Aryane Tofanello,et al.Cytochrome C as an electron acceptor of nanostructured titania and hematite semiconductors[J].Journal of Enaergy Challenges and Mechanics,2014,1(2):86-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700