关键带中天然半导体矿物光电子的产生与作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The photoelectron generation from semiconducting minerals and its effects in critical zone
  • 作者:鲁安怀 ; 李艳 ; 王鑫 ; 丁竑瑞 ; 刘熠 ; 王长秋
  • 英文作者:LU Anhuai;LI Yan;WANG Xin;DING Hongrui;LIU Yi;WANG Changqiu;School of Earth and Space Sciences,Peking University;School of Geosciences and Info-Physics,Central South University;
  • 关键词:关键带 ; 半导体矿物 ; 光电子 ; 微生物 ; 环境效应
  • 英文关键词:critical zone;;semiconducting mineral;;photoelectron;;microorganism;;environmental effect
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:北京大学地球与空间科学学院;中南大学地球科学与信息物理学院;
  • 出版日期:2014-05-15
  • 出版单位:地学前缘
  • 年:2014
  • 期:v.21;No.107
  • 基金:国家重点基础研究发展计划“973”项目(2007CB815600,2014CB846000);; 国家自然科学基金重点项目(41230103)以及面上项目(40172022,40572022,41272003)
  • 语种:中文;
  • 页:DXQY201403034
  • 页数:9
  • CN:03
  • ISSN:11-3370/P
  • 分类号:263-271
摘要
在地球上最不均匀和最复杂的区域——关键带这一极为复杂的开放系统中,矿物与微生物无时无刻不在发生着人们尚未充分认识到的自然作用。文中总结了作者十余年来在矿物与微生物交互作用研究领域,侧重在半导体矿物与微生物协同作用研究方向上所取得的研究成果,重点简述了自然界中半导体矿物特征、半导体矿物光电子特性、矿物光电子促进生命起源与演化、微生物利用矿物光电子——光电能微生物的发现以及土壤矿物光电子与微生物协同固碳作用等研究工作。矿物与微生物之间电子转移和能量流动是关键带中最为重要的动力机制之一,探讨关键带中大量存在的天然半导体矿物如何转化太阳能为化学能或者生物质能的微观作用,可为揭示关键带中多个圈层之间交互作用如何影响地球物质演化、生物进化与环境演变的宏观过程提供理论依据,充满着科学发现与理论突破的机遇。
        Critical zone,the most heterogeneous and complex area on Earth,is an extreme complicated open system.In the critical zone,the interactions between minerals and microorganisms,which have not been fully understood yet,happen all the time.This review paper summarizes the recent research results in the field of minerals and microorganisms interactions,emphasizes the research results of semiconducting minerals and microorganisms synergistic interactions,and briefly introduces the features of natural semiconducting minerals and the semiconducting mineral photoelectrons,the promotion of life origin and evolution by mineral photoelectrons,the discovery of the microorganisms that utilize photoelectronic energy(we call them photoelectrophic microorganisms)and the carbon dioxide fixation by the synergy between soil mineral photoelectrons and microorganisms. The electron transfer and energy flow between minerals and microorganisms are one of the most important kinetic mechanisms in the critical zone.The investigation of the micro-mechanisms of how natural semiconducting minerals transfer solar energy to chemical energy or biomass will provide theoretical evidences to reveal that how the interactions between multiple spheres in the critical zone impact the macro progress of Earth evolvement,life evolution and environment development,which provides a lot of opportunities of scientific discoveries and theoretic breakthroughs.
引文
[1]鲁安怀.生命活动中矿化作用的环境响应机制研究[J].高校地质学报,2007,13(4):613-620.
    [2]Linsebigler A,Lu G,John T.Photocatalysis on TiO2surfaces:Principles,mechanisms,and selected results[J].Chemical Reviews,1995,95(3):735-758.
    [3]Shuey R.Semiconducting Ore Minerals[M].Amsterdam:Elsevier,1975.
    [4]Vaughan D,Craig J.Mineral Chemistry of Metal Sulfides[M].Cambridge:Cambridge University Press,1978.
    [5]Waite T.Photo-redox processes at the mineral-water interface[J].Reviews in Mineralogy and Geochemistry,1990,23(1):559-603.
    [6]李宁,鲁安怀,秦善,等.孕育光催化活性的天然含钒金红石矿物学特征[J].岩石矿物学杂志,2003,22(4):332-338.
    [7]李艳,鲁安怀,王长秋.天然含铁闪锌矿的可见光催化还原活性研究[J].岩石矿物学杂志,2007,26(6):481-486.
    [8]Schoonen M,Xu Y,Strongin D.An introduction to geocatalysis[J].Journal of Geochamical Exploration,1998,62:201-215.
    [9]Lu A,Li Y,Jin S,et al.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J].Nature Communications,2012,3(4):768-775.
    [10]Blankenship R,Tiede D,Barber J,et al.Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J].Science,2010,332:805-809.
    [11]吴相钰,陈守良,葛明德,等.普通生物学[M].3版.北京:高等教育出版社,2009:60-75.
    [12]鲁安怀,李艳,王鑫,等.半导体矿物介导非光合微生物利用光电子新途径[J].微生物学通报,2013,40(1):190-202.
    [13]Nisbet E.The Young Earth:An Introduction to Archaean Geology[M].Cambridge:Cambridge University Press,1987.
    [14]Schidlowski M.3800million-year old record of life from carbon in sedimentary rocks[J].Nature,1988,333:313-318.
    [15]Mulkidjanian A,Bychkov A,Dibrova D,et al.Origin of first cells at terrestrial,anoxic geothermal fields[J].Proceedings of the National Academy of Sciences,2012,109(14):E821-E830.
    [16]Zhang X,Ellery S,Friend C,et al.Photodriven reduction and oxidation reactions on colloidal semiconductor particles:Implications for prebiotic synthesis[J].Journal of Photochemistry and Photobiology A,2007,185(2):301-311.
    [17]Guzman M,Martin S.Prebiotic metabolism:Production by mineral photoelectrochemistry ofα-ketocarboxylic acids in the reductive tricarboxylic acid cycle[J].Astrobiology,2009,9(9):833-842.
    [18]Urey H.Life-Forms in meteorites:Origin of life-like forms in carbonaceous chondrites introduction[J].Nature,1962,193:1119-1123.
    [19]Hayase K,Tsubota H.Sedimentary humic acid and fulvic acid as surface active substances[J].Geochemica et Cosmochimica Acta,1983,47:947-952.
    [20]Smirnoff N,Wheeler G,Loewus F.Ascorbic acid in plants:Biosynthesis and function[J].Critical Reviews in Biochemistry and Molecular Biology,2000,35:291-314.
    [21]Vaughan D.Sulfide Mineralogy and Geochemistry(Vol.88)[M].Chantilly:Mineralogical Society of America,2006.
    [22]Peral J,Mills A.Factors affecting the kinetics of methyl orange reduction photosensitized by colloidal CdS[J].Journal of Photochemistry and Photobiology A:Chemistry,1993,73(1):47-52.
    [23]Bems B,Jentoft F C,Schlgl R.Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids[J].Applied Catalysis B:Environmental,1999,20(2):155-163.
    [24]Yanagida S,Yoshiya M,Shiragami T,et al.Semiconductor photocatalysis.I.Quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites[J].The Journal of Physical Chemistry,1990,94(7):3104-3111.
    [25]Xu Y,Schoonen M.The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J].American Mineralogist,2000,85:543-556.
    [26]Malato S,Fernández-Ibáez P,Maldonado M,et al.Decontamination and disinfection of water by solar photocatalysis:Recent overview and trends[J].Catalysis Today,2009,147(1):1-59.
    [27]Dalrymple O,Stefanakos E,Trotz M,et al.A review of the mechanisms and modeling of photocatalytic disinfection[J].Applied Catalysis B:Environmental,2010,98(1):27-38.
    [28]Li Y,Lu A,Wang C.Semiconducting mineralogical characteristics of natural sphalerite gestating visible-light photocatalysis[J].Acta Geologica Sinica,2009,83(3):633-639.
    [29]Lu A,Li Y,Jin S,et al.Microbial fuel cell equipped with a photocatalytic rutile-coated cathode[J].Energy and Fuels,2010,24(2):1184-1190.
    [30]Newman D K,Banfield J F.Geomicrobiology:How molecular-scale interactions underpin biogeochemical systems[J].Science,2002,296(10):1071-1077.
    [31]鲁安怀.无机界矿物天然自净化功能之矿物光催化作用[J].岩石矿物学杂志,2003,22(4):323-331.
    [32]Selli E,Baglio D,Montanarella L,et al.Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water[J].Water Research,1999,33(8):1827-1836.
    [33]Yang J,Lee S.Removal of Cr(VI)and humic acid by using TiO2 photocatalysis[J].Chemosphere,2006,63:1677-1684.
    [34]Szacilowski K,Macyk W,Drzewiecka-Matuszek A,et al.Bioinorganic photochemistry:Frontiers and mechanisms[J].Chemical Reviews,2005,105:2647-2694.
    [35]Katz E,Zayats M,Willner I,et al.Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c-mediated biocatalytic cascades[J].Chemistry Communication,2006,13:1395-1397.
    [36]Nakamura R,Kai F,Okamoto A,et al.Self-constructed electrically conductive bacterial networks[J].Angewandte Chemie International Edition,2009,48(3):508-511.
    [37]Woodwell G,Hobbie J,Houghton R,et al.Global deforestation:Contribution to atmospheric carbon dioxide[J].Science,1983,222:1081-1086.
    [38]Le QuéréC,Takahashi T,Buitenhuis E,et al.Impact of climate change and variability on the global oceanic sink of CO2[J].Global Biogeochemical Cycles,2010,24:GB4007.doi:10.1029/2009GB003599.
    [39]van Groenigen K,Six J,Hungate B A,et al.Element interactions limit soil carbon storage[J].Proceedings of the National Academy of Sciences,2006,103(17):6571-6574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700