5-羟甲基糠醛选择氧化制2,5-呋喃二甲酸的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ADVANCES ON SELECTIVE OXIDATION OF 5-HYDROXYMETHYLFURFURA INTO 2, 5-FURANDICARBOXYLIC ACID
  • 作者:赖金花 ; 周硕林 ; 刘凯 ; 刘贤响 ; 尹笃林
  • 英文作者:Lai Jinhua;Zhou Shuolin;Liu Kai;Liu Xianxiang;Yin Dulin;National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources;College of Chemistry and Chemical Engineering, Hu'nan Normal University;
  • 关键词:生物质 ; 5-羟甲基糠醛 ; 2 ; 5-呋喃二甲酸 ; 催化 ; 选择氧化
  • 英文关键词:biomass;;5-hydroxymethylfurfural;;2,5-furandicarboxylic acid;;catalysis;;selective oxidation
  • 中文刊名:JXSY
  • 英文刊名:Speciality Petrochemicals
  • 机构:湖南师范大学化学化工学院石化新材料与资源精细利用国家地方联合工程实验室;
  • 出版日期:2019-03-18
  • 出版单位:精细石油化工
  • 年:2019
  • 期:v.36;No.209
  • 基金:国家自然科学基金资助项目(21606082,21776068);; 湖南省自然科学基金资助项目(2018JJ3334);; 湖南省教育厅科学研究项目(17C0951,16C0114);; 湖南省研究生科研创新项目(CX2018B295)
  • 语种:中文;
  • 页:JXSY201902016
  • 页数:8
  • CN:02
  • ISSN:12-1179/TQ T
  • 分类号:69-76
摘要
综述了近年来5-羟甲基糠醛选择氧化制2,5-呋喃二甲酸的研究进展,总结了碱对5-羟甲基糠醛氧化机制的影响,对比了不同氧化剂及工艺条件下5-羟甲基糠醛催化氧化效果,并对该工艺的后续研究及应用前景进行了展望。
        The advance of process from 5-hydroxymethylfurfura into 2, 5-furandicarboxylic acid is summarized. The oxidation reaction mechanism in base or not was summarized. Effects of different oxidation systems and catalytic oxidation process conditions were comparaed. The prospective application of this process was also outlined.
引文
[1] Colmenares J C, Luque R. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds[J]. Chemical Society Reviews, 2014,43(3):765-778.
    [2] Neattu F, Marin R S, Florea M, et al. Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts[J]. Applied Catalysis B:Environmental,2016, 180(3):751-757.
    [3] Werpy T A, Holladay J E, White J F. Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas[J]. Synthetic Fuels, 2004.
    [4] Wu B, Xu Y, Bu Z, et al. Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s: From synthesis using highly purified 2,5-furandicarboxylic acid to thermo-mechanical properties[J]. Polymer, 2014, 55(16):3648-3655.
    [5] 陈光宇, 吴林波, 李伯耿. HMF路线合成生物基单体2,5-呋喃二甲酸的研究进展[J]. 化工进展, 2018,37(8):3146-3154.
    [6] 邹彬, 陈学珊, 郭静. 5-羟甲基糠醛催化氧化为2,5-呋喃二甲酸的研究进展[J]. 应用化工, 2016,45(11):2130-2134,2138.
    [7] Sajid M, Zhao X, Liu D. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF):recent progress focusing on the chemical-catalytic routes[J]. Green Chemistry, 2018,20(24):5427-5453.
    [8] Kim S M, Shin H Y, Kim D W, et al. Metal-Free Chemoselective Oxidative Dehomologation or Direct Oxidation of Alcohols:Implication for Biomass Conversion[J]. ChemSusChem, 2015,9(3):232-232.
    [9] Zhang L, Luo X, Li Y. A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts[J]. Journal of Energy Chemistry, 2018,27(1):243-249.
    [10] Zope B N, Hibbitts D D, Neurock M, et al. Reactivity of the gold/water interface during selective oxidation catalysis[J]. Science, 2010, 330 (6000): 74-78.
    [11] Ait Rass H, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2-and ZrO2-based supports[J]. ChemSusChem, 2015,8(7):1206-1217.
    [12] Rass H A, Essayem N, Besson M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion[J]. Green Chemistry, 2013, 15(8):2240-2251.
    [13] Antonyraj C A, Huynh N T T, Park S K, et al. Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA)[J]. Applied Catalysis A:General,2017, 547:230-236.
    [14] Xu Shuai, Zhou Peng, Zhang Zehui, et al. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4[J]. Journal of the American Chemical Society, 2017, 139(41):14775-14782.
    [15] Verma S, Nadagouda M N, Varma R S. Porous nitrogen-enriched carbonaceous material from marine waste:chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid[J]. Scientific Reports, 2017,7(1):536.
    [16] Niu W, Wang D, Yang G, et al. Pt Nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) under mild conditions[J]. Bulletin of the Chemical Society of Japan, 2014,87(10):1124-1129.
    [17] Siyo B, Schneider M, Radnik J, et al. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Applied Catalysis A: General, 2014,478:107-116.
    [18] Miao Z, Wu T, Li J, et al. Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2-δ supported Pt catalyst at room temperature[J]. Rsc Advances, 2015,5(26):19823-19829.
    [19] Yi G S, Teong S P, Li X K, et al Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid[J]. ChemSusChem, 2014, 7(8):2131-2135.
    [20] Hayashi E, Komanoya T, Kamata K, et al. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with MnO2[J]. ChemSusChem, 2017, 10(4):654-658.
    [21] Donoeva B, Masoud N, de Jongh P E. Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural[J]. ACS Catalysis, 2017,7(7):4581-4591.
    [22] Zhang Z, Zhen J, Liu B, et al. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst[J]. Green Chemistry, 2015, 17(2):1308-1317.
    [23] Liu B, Ren Y, Zhang Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions[J]. Green Chemistry, 2015, 17(3):1610-1617.
    [24] Zhang Y, Xue Z, Wang J, et al. Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural[J]. Rsc Advances,2016, 6(56):51229-51237.
    [25] Mei N, Liu B, Zheng J, et al. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water[J]. Catalysis Science & Technology, 2015,5(6):3194-3202.
    [26] Nguyen C V, Liao Y T, Kang T C, et al. A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion[J]. Green Chemistry, 2016,18(22):5957-5961.
    [27] Albonetti S, Lolli A, Morandi V, et al. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts:Optimization of active phase and metal-support interaction[J]. Applied Catalysis B: Environmental, 2015,163:520-530.
    [28] Kim M, Su Y, Fukuoka A, et al. Aerobic oxidation of 5-(hydroxymethyl)furfural cyclic acetal enables selective furan-2,5-dicarboxylic acid formation with CeO2-supported gold catalyst[J]. Angewandte Chemie, 2018,130(27): 8267-8371.
    [29] Ramakanta Sahu L D P. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts[J]. Reaction Kinetics Mechanisms & Catalysis, 2014, 112(1):173-187.
    [30] Yi Guangshun, Teong Siew Ping, Yugen Z. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Ru/C catalyst[J]. Green Chemistry, 2015, 18(4):979-983.
    [31] Zheng L, Zhao J, Du Z, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts[J]. Science China, 2017,60(7):950-957.
    [32] 李兴涛, 闫海生, 王磊等. 石墨烯负载钯纳米颗粒催化5-羟甲基糠醛选择氧化制2,5-呋喃二甲酸[J]. 材料导报, 2016, 30(16):26-30.
    [33] Chadderdon David J, Xin L, Qi Ji, et al. Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid on Supported Au and Pd Bimetallic Nanoparticles[J]. Green Chemistry, 2014.
    [34] Rathod P V, Jadhav V H. Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):5766-5771.
    [35] Zhang S, Sun X, Zheng Z, et al. Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Catalysis Communications, 2018,113:19-22.
    [36] Li S, Su K, Li Z, et al. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex[J]. Green Chemistry, 2016, 18(7):2122-2128.
    [37] Ching-Tien C, Van N C, Zheng-Yen W, et al. Hydrogen peroxide assisted selective oxidation of 5-hydroxymethylfurfural in water under mild conditions[J]. ChemCatChem, 2018,10(2):361-365.
    [38] Siankevich S, Savoglidis G, Fei Z, et al. A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions[J]. Journal of Catalysis, 2014, 315:67-74.
    [39] Gao T, Gao T, Fang W, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst[J]. Molecular Catalysis, 2017,439:171-179.
    [40] Wan X, Zhou C, Chen J, et al. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles[J]. ACS Catalysis, 2014, 4(7):2175-2185.
    [41] Mishra D K, Lee H J, Kim J, et al. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions[J]. Green Chemistry, 2017,19(7):1619-1623.
    [42] Gorbanev Y Y, Kegn?s S, Riisager A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water[J]. Topics in Catalysis, 2011,54(16-18):1318-1324.
    [43] Zhou C, Deng W, Wan X, et al. Functionalized carbon nanotubes for biomass conversion: The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst[J]. Chem Cat Chem, 2015, 7(18):2853-2863.
    [44] Saha B, Gupta D, Abu-Omar M.M, et al. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid[J]. Journal of Catalysis, 2013,299:316-320.
    [45] Zuo X, Venkitasubramanian P, Busch D H, et al. Optimization of Co/Mn/Br-catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7):3659-3668.
    [46] Yan D, Xin J, Shi C, et al. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids[J]. Chemical Engineering Journal, 2017, 323: 473-482.
    [47] Shen J, Chen H, Chen K, et al. Atomic layer deposition of a Pt-skin catalyst for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic Acid[J]. Industrial & Engineering Chemistry Research, 2018, 57(8):2811-2818.
    [48] Han X, Li C, Guo Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Applied Catalysis A: General, 2016, 526:1-8.
    [49] Pichler C M, Al-Shaal M G, Gu D, et al. Ruthenium supported on high-surface-area zirconia as an efficient catalyst for the base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. ChemSusChem, 2018, 11(13):2083-2090.
    [50] Gao T, Yin Y, Fang W, et al. Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions[J]. Molecular Catalysis, 2018,450:55-64.
    [51] Gao Z, Xie R, Fan G, et al. Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7):5852-5861.
    [52] Ventura M, Nocito F, Giglio E D, et al. Tunable mixed oxides based on CeO2 for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to FDCA in water[J]. Green Chemistry, 2018,20(17):3921-3926.
    [53] Jain A, Jonnalagadda S C, Ramanujachary K V, et al. Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst[J]. Catalysis Communications, 2015,58:179-182.
    [54] Saha B, Dutta S, Abu-Omar M M. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts[J]. Catalysis Science & Technology, 2012, 2(1):79-81.
    [55] Yang Z, Qi W, Su R, et al. Selective synthesis of 2,5-diformylfuran and 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose catalyzed by magnetically separable catalysts[J]. Energy & Fuels, 2017, 31(1):533-541.
    [56] Stahlberg T, Eyjólfsdóttir E, Gorbanev Y Y, et al. Aerobic oxidation of 5-(hydroxymethyl)furfural in ionic liquids with solid ruthenium hydroxide catalysts[J]. Catalysis Letters, 2012, 142(9):1089-1097.
    [57] Yan D, Xin J, Zhao Q, et al. Fe-Zr-O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer[J]. Catalysis Science & Technology, 2018, 8(1):164-175.
    [58] Wang S, Zhang Z, Liu B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst[J]. ACS Sustainable Chemistry & Engineering, 2015,3(3):406-412.
    [59] Gawade A B, Nakhate A V, Yadav G D. Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst[J]. Catalysis Today, 2017,309:119-125.
    [60] Hansen T S, Sádaba I, García-Suárez E J, et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions[J]. Applied Catalysis A:General, 2013, 456: 44-50.
    [61] Gao L, Deng K, Zheng J, et al. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin[J]. Chemical Engineering Journal, 2015,270:444-449.
    [62] Yang F, Ding Y, Tang J, et al. Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation[J]. Molecular Catalysis, 2017,435:144-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700