铜基甲醇催化剂失活因素及解决措施研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in deactivation and solutions of Cu-based methanol catalysts
  • 作者:喻健 ; 任所才 ; 刘斌 ; 陈阔 ; 班红艳 ; 李聪明 ; 李忠
  • 英文作者:YU Jian;REN Suo-cai;LIU Bin;CHEN Kuo;BAN Hong-yan;LI Cong-ming;LI Zhong;Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi province, Taiyuan University of Technology;
  • 关键词:铜基催化剂 ; 甲醇合成 ; 失活 ; 解决方法
  • 英文关键词:copper-based catalyst;;methanol synthesis;;deactivation;;solutions
  • 中文刊名:TRQH
  • 英文刊名:Natural Gas Chemical Industry
  • 机构:太原理工大学煤化工研究所煤科学与技术教育部和山西省重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:天然气化工(C1化学与化工)
  • 年:2019
  • 期:v.44;No.244
  • 基金:国家自然科学基金资助项目(21676176);; 山西省自然科学基金项目(201601D011016);; 大连化物所催化基础国家重点实验室开放基金(N-15-05)
  • 语种:中文;
  • 页:TRQH201901027
  • 页数:5
  • CN:01
  • ISSN:51-1336/TQ
  • 分类号:122-126
摘要
铜基催化剂是甲醇合成反应中最为普遍使用的催化剂。介绍了铜基催化剂失活原因,包括烧结失活、中毒失活等,结果发现烧结是铜基催化剂失活的主要原因,这是由于催化剂的烧结容易诱导活性中心铜粒子团聚长大而导致有效活性位急剧减少,从而导致催化剂稳定性急剧下降。此外,还介绍了提高催化剂稳定性目前提出的主要解决办法,主要包括加入助剂、形成合金、优化金属与载体之间相互作用、最大化粒子间距离、限域作用等。
        Copper-based catalysts are the most commonly used catalysts in methanol synthesis. The causes of deactivation of copper based catalysts are introduced, including sintering and poisoning etc. It is found that sintering is the main reason for the deactivation of copper-based catalysts because it can induce the aggregation and growth of the active copper particles, which leads to a sharp decrease in the effective active sites and thus results in the reduction of catalyst stability. In addition, the main solutions proposed to improve the stability of the catalysts are also introduced, including the addition of additives, alloy formation, optimization of the interaction between metal and support, maximization of the distance between particles, and confinement effect.
引文
[1]Masoumi S, Towfighi J, Mo hamadalizadeh A et al. Tritemplates synthesis of SAPO-34 and its performance in MTO reaction by statistical design of experiments[J]. App Catal A, 2015, 493:103-111.
    [2]Fathi S, Sohrabi M, Falamaki C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J].Fuel, 2014, 116:529-537.
    [3]Bjorgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007, 249:195-207.
    [4]Gusovius A F, Watling T C, Prins R. Ca promoted Pd/SiO2catalysts for the synthesis of methanol from CO:the location of the promoter[J]. App Catal A, 1999, 188:187-199.
    [5]Ponec V. Cu and Pd, Two catalysts for CH3OH synthesis:the similarities and the differences[J]. Surf Sci, 1992,272:111-117.
    [6]Twigg M V, Spencer M S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J].App Catal A, 2001, 212:161-174.
    [7]Van den Berg R, Parmentier T E, Elkj?r C F, et al.Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts[J].ACS Catal, 2015,5:4439-4448.
    [8]Bartholomew C H. Sintering kinetics of supported metals:New perspectives from a unifying GPLE treatment[J].App Catal A, 1993, 107:1-57.
    [9]Goodman E D, Schwalbe J A, Cargnello M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts[J]. ACS Catal, 2017, 7:7156-7173.
    [10]Wynblatt P, Gjostein N A. Supported metal crystallites[J].Prog Solid State Chem, 1976, 9:21-58.
    [11]Ouyang R, Liu J X, Li W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. J Am Chem Soc, 2013. 135:1760-1771.
    [12]Twigg M V, Spencer M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis[J]. Top Catal, 2003, 22:191-203.
    [13]Sun J T, Metcalfe I S, Sahibzada M. Deactivation of Cu/ZnO/Al2O3methanol synthesis catalyst by sintering[J]. Ind Eng Chem Res, 1999. 38:3868-3872.
    [14]Zhai X, Shamoto J, Xie H, et al. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase[J]. Fuel, 2008, 8:430-434.
    [15]栾友顺,徐恒泳,于春英,等.一步合成二甲醚催化剂烧结失活和原位再生的研究[J].燃料化学学报, 2008, 36(1):70-73.
    [16]王莉,李扬,艾珍,等.固定床合成气一步合成二甲醚复合催化剂失活现象的研究[J].天然气化工—C1化学与化工, 2009, 34(4):56-58.
    [17]Rasmussen D B, Janssens T V W, Temel B, et al. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT[J]. J Catal, 2012, 293:205-214.
    [18]Liu X M, Lu G Q, Yan Z F, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003, 42:6518-6530.
    [19]Chinchen G C, Denny P J, Jennings J R, et al. Synthesis of methanol[J]. App Catal, 1988, 36:1-65.
    [20]Wang Z Q, Xu Z N, Peng S Y, et al. High-performance and long-lived Cu/SiO2nanocatalyst for CO2hydrogenation[J]. ACS Catal, 2015, 5:4255-4259.
    [21]S oczyński J, Grabowski R, Koz owska A, et al. Effect of additives and a preparation method on catalytic activity of Cu/ZnO/ZrO2system in the carbon dioxide hydrogenation to methanol[J]. Stud Surf Sci Catal, 2004, 153:161-164.
    [22]Kilo M, Weigel J, Wokaun A, et al. Effect of the addition of chromium-and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide[J]. J Mol Catal A, 1997, 126:169-184.
    [23]Meshkini F, Taghizadeh M, Bahmani M. Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3catalysts in methanol synthesis from syngas using factorial experimental design[J]. Fuel, 2010, 89:170-175.
    [24]Naumann d’Alnoncourt R, Xia X, Strunk J, et al. The influence of strongly reducing conditions on strong metalsupport interactions in Cu/ZnO catalysts used for methanol synthesis[J]. Phys Chem Chem Phys, 2006, 8:1525-1538.
    [25]Farmer J A, Campbell C T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding[J].Science, 2010, 329:933-936.
    [26]Kanai Y, Watanabe T, Fujitani T, et al. Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst[J]. Catal Lett, 1994, 27:67-78.
    [27]Tops e N Y, Tops e H. On the nature of surface structural changes in CuZnO methanol synthesis catalysts[J]. Top Catal, 1999, 8:267-270.
    [28]Cao A, Veser G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles[J]. Nat Mater, 2010, 9:75-81.
    [29]Grunwaldt J D, Molenbroek A M, Tops e N Y, et al. In situ investigations of structural changes in Cu/ZnO catalysts[J]. J Catal, 2000, 194:452-460.
    [30]Kuld S, Conradsen C, Moses P G, et al. Quantification of zinc atoms in a surface alloy on copper in an industrialtype methanol synthesis catalyst[J]. Angew Chem Int Edit, 2014, 53:5941-5945.
    [31]Prieto G, Zecevic J, Friedrich H, et al. Towards stable catalysts by controlling collective properties of supported metal nanoparticles[J]. Nat Mater, 2013, 12:p. 34-39.
    [32]García-Trenco A, Martínez A. A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica[J]. Catal Today, 2013, 215:152-161.
    [33]Prieto G, Shakeri M, de Jong K P, et al. Quantitative relationship between support porosity and the stability of pore-confined metal nanoparticles studied on CuZnO/SiO2methanol synthesis catalysts[J]. ACS Nano, 2014, 8:2522-31.
    [34]Zhu Q, Zhang Q, Wen L. Anti-sintering silica-coating CuZnAlZr catalyst for methanol synthesis from CO hydrogenation[J]. Fuel Process Technol, 2017, 156:280-289.
    [35]Yang H, Gao P, Zhang C, et al. Core-shell structured Cu@m-SiO2and Cu/ZnO@m-SiO2catalysts for methanol synthesis from CO2hydrogenation[J].Catal Commun, 2016,84:56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700