泡沫钢的制备及三点弯曲性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Three-point Bending Performance of Steel Foam Plate
  • 作者:孙亚东 ; 周芸 ; 郭坤山 ; 杨一群 ; 李和汀 ; 左孝青
  • 英文作者:SUN Yadong;ZHOU Yun;GUO Kunshan;YANG Yiqun;LI Heting;ZUO Xiaoqing;Faculty of Materials Science and Engineering,Kunming University of Science and Technology;
  • 关键词:316L不锈钢 ; 造孔剂 ; 泡沫钢 ; 泡沫钢夹芯复合板 ; 三点弯曲
  • 英文关键词:316L stainless steel;;pore forming agent;;steel foam;;steel foam-sandwich panels;;three-point bending
  • 中文刊名:HKCB
  • 英文刊名:Journal of Aeronautical Materials
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2017-08-01
  • 出版单位:航空材料学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金资助项目(51264024)
  • 语种:中文;
  • 页:HKCB201704012
  • 页数:7
  • CN:04
  • ISSN:11-3159/V
  • 分类号:81-87
摘要
为了制备孔隙率较高、孔结构均匀、性能优良的泡沫钢板及夹芯复合板,以316L不锈钢粉为原料,Ca Cl2为造孔剂,采用粉末冶金烧结-溶解法制备不同孔隙率、孔径的泡沫钢,并用物理粘接法制备泡沫钢夹芯复合板。通过对泡沫钢板和夹芯复合板进行三点弯曲实验研究两者的抗弯曲性能。观察泡沫钢板的三点弯曲变形过程,分析孔隙率和孔径对泡沫钢板和夹芯复合板抗弯曲性能的影响,对比两者的极限抗弯载荷变化。结果表明:泡沫钢板的变形首先从薄壁不规则的孔壁开始,形成裂纹并进行扩展,最终导致宏观断裂;对于泡沫钢夹芯复合板,当孔隙率从69.4%增加至82.5%时,其所能承受的极限载荷从2345 N下降至1254 N,在相同孔隙率下,相比于泡沫钢板,夹芯板承受的极限弯曲载荷提升了15%~43%;当孔径从1.9 mm增加至3.9 mm,孔隙率约为73%时,其所能承受的极限弯曲载荷从2070 N下降至1528 N,与泡沫钢板相比,相同孔径下,夹芯板承受的极限弯曲载荷提升了15%~28%;在孔隙率和孔径相同条件下,泡沫钢夹芯复合板的抗弯承载能力比泡沫钢板提高15%以上。
        In order to fabricate steel foams with high porosity,uniform pore structure and high-performance,steel foams with different porosities and cell sizes were fabricated by a sintering-dissolution process using 316 L stainless steel powder as raw material and CaCl_2 as pore forming agent,and steel foam-sandwich panels were fabricated by physical bonding. Three-point bending tests were carried out to explore the bending performance of steel foam and steel foam-sandwich panels. The influence of the porosity and cell size of foam sample on the bending load was analyzed and discussed,and the bending strength of steel foam-sandwich panel was compared with steel foam sample. The results show that the bending deformation of steel foam is started at the weakest cell wall firstly,then the cracks are initiated and propagated,eventually the macroscopic fracture is caused. For steel foam-sandwich panels,the maximum load is reduced from 2345 N to 1254 N when the porosity is increased from 69. 4% to 82. 5%,whereas the maximum bending load of steel foam-sandwich panels is increased by 15%-43% with the same porosity. When the cell size is increased from 1. 9 mm to 3. 9 mm and the porosity is about 73%,the maximum bending load is reduced from 2070 N to 1528 N,whereas the maximum bending load of steel foam-sandwich panels is increased by 15%-28% with the same pore size. Under the same porosity and pore size,the steel foam-sandwich panels have excellent resistance to bending at least 15% higher than the steel foam.
引文
[1]SMITH B H,SZYNISZEWSKI S,HAJJAR J F,et al.Steel foam for structures:a review of applications,manufacturing and material properties[J].Journal of Constructional Steel Research,2011,71(1):1-10.
    [2]BEKOZ N,OKTAY E.Effects of carbamide shape and content on processing and properties of steel foams[J].Journal of Materials Processing Technology,2012,212:2109–2116.
    [3]LI Z Q,XI C Q,JING L,et al.Effect of loading rate on the compressive properties of open-cell metal foams[J].Materials Science and Engineering:A,2014,592(592):221-229.
    [4]XIA X C,CHEN X W,ZHANG Z,et al.Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres[J].Materials and Design,2014,56(4):353-358.
    [5]胡松,左孝青,谢香云,等.特殊孔结构ZA27合金泡沫的吸声性能[J].中国有色金属学报,2014,24(11):2798-2804.(HU S,ZUO X Q,XIE X Y,et al.Sound absorption properties of ZA27 alloy foams with particular pore structures[J].The Chinese Journal of Nonferrous Metals,2014,24(11):2798-2804.)
    [6]KETEP S F,BERGEL A,CALMET A,et al.Stainless steel foam pushes the current provided by microbial bioanodes for bioelectrochemical systems[J].Energy and Environmental Science,2014,6:1633-1637.
    [7]刘家安,于思荣,朱先勇.Zn-22Al泡沫夹芯复合板的三点弯曲性能[J].吉林大学学报(工学版),2012,42(2):344-348.(LIU J A,YU S R,ZHU X Y.Three-point bending properties of Zn-22Al foam sandwich panel[J].Journal of Jilin University(Engineering and Technology Edition),2012,42(2):344-348.)
    [8]SZYNISZEWSKI S,SMITH B H,HAJJAR J F,et al.Local buckling strength of steel foam sandwich panels[J].ThinWalled Structures,2012,59(4):11-19.
    [9]FU Y H.Analysis of collision characteristic of oil tank based on steel-foam sandwich and iceberg[J].Ship Engineering,2014,36:158-161.
    [10]SZYNISZEWSKI S T,SMITH B H,HAJJAR J F,et al.The mechanical properties and modeling of a sintered hollow sphere steel foam[J].Materials and Design,2014,54(2):1083-1094.
    [11]BEKOZ N,OKTAY E.High temperature mechanical properties of low alloy steel foams produced by powder metallurgy[J].Materials and Design,2014,53(1):482-489.
    [12]GLSOY H,GERMAN RM.Sintered foams from precipitation hardened stainless steel powder[J].Powder Metallurgy 2008;51:350-353.
    [13]JOSHI S,GUPTA G,SHARMA M,et al.Synthesis and characterization of stainless steel foam via powder metallurgy taking acicular urea as space holder[J].Material Science Research India,2015,12:43-49.
    [14]何凯,龚志红,徐娟,等.FM73M胶膜及其与PMI泡沫芯的胶接机理[J].宇航材料工艺,2013,43(1):82-85.(HE K,GONG Z H,XU J,et al.Curing characteristics and adhesive mechanism with PMI foam core of FM73M adhesive film[J].Aerospace Materials and Technology,2013,43(1):82-85.)
    [15]张敏,祖国胤,姚广春.新型泡沫铝三明治板的弯曲性能[J].过程工程学报,2007,7(3):628-631.(ZHANG M,ZU G Y,YAO G C.Bending properties of novel aluminum foam sandwich panels[J].The Chinese Journal of Process Engineering,2007,7(3):628-631.)
    [16]WANG N Z,CHEN X,YAN-XIANG L I,et al.Threepoint bending performance of a new aluminum foam composite structure[J].Transactions of Nonferrous Metals Society of China,2016,26(2):359-368.
    [17]查海波,凤仪,朱琪琪,等.泡沫铝层合梁的弯曲性能[J].中国有色金属学报,2007,17(2):290-295.(ZHA H B,FENG Y,ZHU Q Q,et al.Bending capability of foam aluminum sandwich beams[J].The Chinese Journal of Nonferrous Metals,2007,17(2):290-295.)
    [18]BEISS P,DALGIC M.Structure property relationships in porous sintered steels[J].Materials Chemistry and Physics,,2001,67(1(3):37-42.
    [19]ASHBY M F,EVANS A G,GIBSON J W,et al.Metal foams:a design guide[M].Oxford,UK:ButterworthHeinemann,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700