多电源梯级调频方案及风电场级调频时序优化策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-source Cascaded Frequency Modulation Scheme and Time-sequence Optimization Strategy of Frequency Modulation at Level of Wind Farm
  • 作者:张健 ; 李文锋 ; 王晖 ; 张红颖 ; 黄伟
  • 英文作者:ZHANG Jian;LI Wenfeng;WANG Hui;ZHANG Hongying;HUANG Wei;China Electric Power Research Institute;Yunnan Electric Power Dispatching and Control Center;
  • 关键词:电力系统 ; 风电场 ; 一次调频 ; 梯级调频 ; 时序优化 ; 频率二次跌落
  • 英文关键词:power system;;wind farm;;primary frequency modulation;;cascaded frequency modulation;;time-sequence optimization;;secondary frequency drop
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:中国电力科学研究院有限公司;云南电力调度控制中心;
  • 出版日期:2019-07-02 09:00
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.661
  • 基金:国家电网公司科技项目(5442XT190006)~~
  • 语种:中文;
  • 页:DLXT201915014
  • 页数:12
  • CN:15
  • ISSN:32-1180/TP
  • 分类号:153-164
摘要
目前,大规模风电接入电力系统面临的主要问题之一是系统的频率稳定性。文中提出一种风电场级一次调频时序优化的工程实用策略,并对风光水火参与系统调频的次序提出了梯级调频方案。首先以云南电网为例,讨论了风光水火不同电源接入电网时的梯级调频方案,在电网发生频率扰动情况下对不同电源参与调频的顺序进行了研究,并提出了风电和光伏机组参与调频的需求。然后分析了调频时间尺度内风电场的功率变化及风电机组层面调频时的有功控制策略。在此基础上,在风电场层面给出了场内风电机组一次调频的投入与退出策略,通过读取风电场内各台风电机组的实时状态与计算系统的调频需求,得出风电场在调频期间需要投入的最小的风电机组台数,在风电场结束一次调频时通过时序依次退出风电机组的一次调频,降低风电场退出一次调频可能会造成的频率二次跌落。最后通过仿真验证了所提出的策略。
        One of the major problems of large-scale wind power integration is the frequency stability of the power system at present.This paper puts forward an engineering practical strategy for the time-sequence optimization of wind-farm-level primary frequency modulation,and a cascaded frequency modulation scheme for the order of wind,photovoltaic,hydraulic,thermal power participating in the system frequency modulation.Firstly,by taking the Yunnan power grid as an example,the cascaded frequency modulation scheme is discussed when different power sources of wind,photovoltaic,hydraulic,thermal power are connected to the power grid,the order of different power sources participating in the frequency modulation is studied with the frequency disturbance of the power grid,and the requirement of wind and photovoltaic power units participating in the frequency modulation is put forward.Then the active power variation of wind farm within the time scale of frequency modulation is analyzed,and the active power control strategy of wind turbines during the frequency modulation is discussed.Based on this,the input and exit strategies of primary frequency modulation of wind turbines at the wind farm level are given,and the minimum number of wind turbines that the wind farm needs to input during the frequency modulation is obtained by reading the real-time status of each wind turbine in the wind farm and computing the frequency modulation requirement of the power system.In order to reduce the probability of secondary frequency drop when the wind farm withdraws the primary frequency modulation,the wind turbines withdraw the primary frequency modulation orderly by the time sequence at the end of frequency modulation of the wind farm.Finally,the proposed strategy is verified by the simulation.
引文
[1]Renewable Energy Policy Network for the 21st Century.Renewables 2018global status report[EB/OL].[2018-07-18].http://www.ren21.net/wp-content/uploads/2018/07/GSR2018_Highlights_CH_FINAL.pdf.
    [2]国家发展和改革委员会,国家能源局.电力发展“十三五”规划[EB/OL].[2017-06-05].http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/W020170605632835660561.pdf.National Development and Reform Commission,National Energy Administration.The electric power development planning in the 13th Five-Year Plan[EB/OL].[2017-06-05].http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/W0201706 05632835660561.pdf.
    [3]安军,冯琦,穆钢,等.利用敏感频段评估大规模风电对电力系统频率影响的方法[J].电力系统自动化,2017,41(21):178-183.DOI:10.7500/AEPS20170611003.AN Jun,FENG Qi,MU Gang,et al.Method for evaluation effects of large-scale wind power on frequency of power system by using sensitive frequency band[J].Automation of Electric Power Systems,2017,41(21):178-183.DOI:10.7500/AEPS20170611003.
    [4]李文锋,张健,卜广全,等.抽蓄电站和经多端柔性直流电网接入的大规模新能源间的协调互补优化控制方案[J].电力系统保护与控制,2017,45(23):136-141.LI Wenfeng,ZHANG Jian,BU Guangquan,et al.An coordinate complementary optimization control scheme between pumped storage station and large-scale new renewable integrated through VSC-MTDC[J].Power System Protection and Control,2017,45(23):136-141.
    [5]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.ZHANG Liying,YE Tinglu,XIN Yaozhong,et al.Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9.
    [6]李世春,唐红艳,邓长虹,等.考虑频率约束及风电机组调频的风电穿透功率极限计算[J].电力系统自动化,2019,43(4):33-39.DOI:10.7500/AEPS20180411009.LI Shichun,TANG Hongyan,DENG Changhong,et al.Calculation of wind power penetration limit involving frequency constraints and frequency regulation of wind turbines[J].Automation of Electric Power Systems,2019,43(4):33-39.DOI:10.7500/AEPS20180411009.
    [7]武鑫,滕伟,柳亦兵.电网调频型飞轮储能系统自适应鲁棒充电控制方法研究[J].电力系统保护与控制,2019,47(8):56-61.WU Xin,TENG Wei,LIU Yibing.Study on adaptive robust charge control of flywheel energy storage system for grid frequency adjustment[J].Power System Protection and Control,2019,47(8):56-61.
    [8]YAO D L,CHOI S H,TSENG K J,et al.Multi-dimensional scenario forecast for generation of multiple wind farms[J].Journal of Modern Power Systems and Clean Energy,2015,3(3):361-370.
    [9]任洛卿,白泽洋,于昌海,等.风光储联合发电系统有功控制策略研究及工程应用[J].电力系统自动化,2014,38(7):105-111.REN Luoqing,BAI Zeyang,YU Changhai,et al.Research on active power control strategy for wind/photovoltaic/energy storage hybrid power system and its engineering application[J].Automation of Electric Power Systems,2014,38(7):105-111.
    [10]郭文勇,蔡富裕,赵闯,等.超导储能技术在可再生能源中的应用与展望[J].电力系统自动化,2019,43(8):2-14.DOI:10.7500/AEPS20181022001.GUO Wenyong,CAI Fuyu,ZHAO Chuang,et al.Application and prospect of superconducting magnetic energy storage for renewable energy[J].Automation of Electric Power Systems,2019,43(8):2-14.DOI:10.7500/AEPS 20181022001.
    [11]李军徽,冯喜超,严干贵,等.高风电渗透率下的电力系统调频研究综述[J].电力系统保护与控制,2018,46(2):163-170.LI Junhui,FENG Xichao,YAN Gangui,et al.Survey on frequency regulation technologies on high wind generation power system[J].Power System Protection and Control,2018,46(2):163-170.
    [12]刘彬彬,杨健维,廖凯,等.基于转子动能控制的双馈风电机组频率控制改进方案[J].电力系统自动化,2016,40(16):17-22.LIU Binbin,YANG Jianwei,LIAO Kai,et al.Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J].Automation of Electric Power Systems,2016,40(16):17-22.
    [13]ZHAO J,LYU X,FU Y,et al.Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control[J].IEEETransactions on Energy Conversion,2016,31(3):833-845.
    [14]WU Z P,GAO W Z,Gao T Q,et al.State-of-the-art review on frequency response of wind power plants in power systems[J].Journal of Modern Power Systems and Clean Energy,2018,6(1):1-16.
    [15]全锐,潘文霞,刘明洋.基于低阶频率响应模型的双馈风电机组下垂系数修正方法[J].电力系统自动化,2018,42(1):68-73.DOI:10.7500/AEPS20170410001.QUAN Rui,PAN Wenxia,LIU Mingyang.Droop coefficient modification method for DFIG based on low-order system frequency response model[J].Automation of Electric Power Systems,2018,42(1):68-73.DOI:10.7500/AEPS20170410001.
    [16]胥国毅,胡家欣,郭树锋,等.超速风电机组的改进频率控制方法[J].电力系统自动化,2018,42(8):39-44.DOI:10.7500/AEPS20171010003.XU Guoyi,HU Jiaxin,GUO Shufeng,et al.Improved frequency control strategy for over-speed wind turbines[J].Automation of Electric Power Systems,2018,42(8):39-44.DOI:10.7500/AEPS20171010003.
    [17]付媛,王毅,张祥宇,等.变速风电机组的惯性与一次调频特性分析及综合控制[J].中国电机工程学报,2014,34(27):4706-4716.FU Yuan,WANG Yi,ZHANG Xiangyu,et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J].Proceedings of the CSEE,2014,34(27):4706-4716.
    [18]何成明,王洪涛,孙华东,等.变速风电机组调频特性分析及风电场时序协同控制策略[J].电力系统自动化,2013,37(9):1-6.HE Chengming,WANG Hongtao,SUN Huadong,et al.Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm[J].Automation of Electric Power Systems,2013,37(9):1-6.
    [19]刘吉臻,姚琦,柳玉,等.风火联合调度的风电场一次调频控制策略研究[J].中国电机工程学报,2017,37(12):3462-3469.LIU Jizhen,YAO Qi,LIU Yu,et al.Wind farm primary frequency control strategy based on wind&thermal power joint control[J].Proceedings of the CSEE,2017,37(12):3462-3469.
    [20]WANG Z,WU W.Coordinated control method for DFIG-based wind farm to provide primary frequency regulation service[J].IEEE Transactions on Power Systems,2018,33(3):2644-2659.
    [21]国家能源局.电力系统网源协调技术规范:DL/T 1870-2018[S].北京:中国电力出版社,2018.National Energy Administration.Technical specification for power grid and source coordination:DL/T 1870-2018[S].Beijing:China Electric Power Press,2018.
    [22]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7.XIAO Chuangying,WANG Ningbo,DING Kun,et al.System power regulation scheme for Jiuquan wind power base[J].Proceedings of the CSEE,2010,30(10):1-7.
    [23]林卫星,文劲宇,艾小猛,等.风电功率波动特性的概率分布研究[J].中国电机工程学报,2012,32(1):38-46.LIN Weixing,WEN Jinyu,AI Xiaomeng,et al.Probability density function of wind power variations[J].Proceedings of the CSEE,2012,32(1):38-46.
    [24]GHOSH S,KAMALASADAN S,SENROY N,et al.Doubly fed induction generator(DFIG)-based wind farm control framework for primary frequency and inertial response application[J].IEEE Transactions on Power Systems,2016,31(3):1861-1871.
    [25]LI Y,ZHAO X,WONG K P.Advanced control strategies of PMSG-based wind turbines for system inertia support[J].IEEE Transactions on Power Systems,2017,32(4):3027-3037.
    [26]中国国家标准化管理委员会.发电机组并网安全条件及评价:GB/T 28566-2012[S].北京:中国标准出版社,2012.Standardization Administration of the People’s Republic of China.Security specification and its evaluation for generating unit interconnection:GB/T 28566-2012[S].Beijing:Standards Press of China,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700