木质素基生物炭制备及对亚甲基蓝的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Lignin-Based Biochar and Adsorption Capability of Methylene Blue
  • 作者:苏玲 ; 庞久寅 ; 姜贵全 ; 温明宇 ; 时君友
  • 英文作者:Su Ling;Pang Jiuyin;Jiang Guiquan;Wen Mingyu;Shi Junyou;Jilin Provincial Key Laboratory of Wooden Materials Science and Engineering( Beihua University);
  • 关键词:木质素 ; 生物炭 ; 亚甲基蓝 ; 吸附
  • 英文关键词:lignin;;biochar;;methylene blue;;adsorption
  • 中文刊名:ZLYY
  • 英文刊名:Journal of Beihua University(Natural Science)
  • 机构:吉林省木质材料科学与工程重点实验室(北华大学);
  • 出版日期:2018-07-10
  • 出版单位:北华大学学报(自然科学版)
  • 年:2018
  • 期:v.19
  • 基金:国家自然科学基金面上项目(31700483);; 吉林省教育厅科学技术研究项目(JJKH20170045KJ);; 吉林省林业厅林业科技推广示范资金项目(JLT[2017]14);; 北华大学博士启动基金项目(202117085)
  • 语种:中文;
  • 页:ZLYY201804028
  • 页数:5
  • CN:04
  • ISSN:22-1316/N
  • 分类号:125-129
摘要
研究温度对生物炭得率、吸附性能的影响.采用无氧慢速热解的方法,以酶解木质素为原料,制备不同温度下的生物质炭,测定热解得率、生物炭得率、挥发分、灰分及对亚甲基蓝的吸附值.热解试验结果表明:随着炭化温度从300℃逐渐升高到700℃,热解得率先降低后升高,挥发成分先升高后降低,生物炭得率先降低后升高.在500℃时,热解得率和生物炭得率分别为54.09%和50.77%,灰分含量为3.32%,挥发分含量为45.91%;热解温度为300℃时,木质素基生物炭对亚甲基蓝的吸附值最大,为37.31 mg/g;热解过程中,C—H、C=O键断裂.
        In order to study the effect of temperature on the yield and adsorption performance of biochar,the Lignin-Based biochar at different temperatures were prepared by slow pyrolysis method. Biomass pyrolysis yield,carbon yield,volatiles,ash and methylene blue adsorption values of biochar were measured. The results of experiments showed that the pyrolysis yield and carbon yield decreased first and then increased,the volatile components first rose and then decreased with the carbonization temperature from 300 ℃ to 700 ℃. At 500 ℃,the yield of pyrolysis and carbon were 54. 09% and 50. 77%,respectively. Meanwhile,the ash content and the volatile content was 3. 32% and 45. 91%,respectively. The adsorption experiments showed that the maximum adsorption of methylene blue by lignin-based biochar was 37. 31 mg/g at 300 ℃. The C—H and C=O bonds had broken during the pyrolysis.
引文
[1]王定美,王跃强,袁浩然,等.水热炭化制备污泥生物炭的碳固定[J].化工学报,2013,64(7):2625-2632.
    [2]张伟明.生物炭的理化性质及其在作物生产上的应用[D].沈阳:沈阳农业大学,2012.
    [3]李金文,顾凯,唐朝生,等.生物炭对土体物理化学性质影响的研究进展[J].浙江大学学报(工学版),2018,52(1):192-206.
    [4]李音,单胜道,杨瑞芹,等.低温水热法制备竹生物炭及其对有机物的吸附性能[J].农业工程学报,2016,32(24):240-247.
    [5]梁媛.重金属污染土壤与地下水一体化修复新技术研究[D].上海:上海交通大学,2015.
    [6]王月玲,耿增超,王强,等.生物炭对塿土土壤温室气体及土壤理化性质的影响[J].环境科学,2016,37(9):3634-3641.
    [7]王欣,尹带霞,张凤,等.生物炭对土壤肥力与环境质量的影响机制与风险解析[J].农业工程学报,2015,31(4):248-257.
    [8]袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J].农业工程学报,2018,34(3)159-165.
    [9]陈心想,耿增超.生物质炭在农业上的应用[J].西北农林科技大学学报(自然科学版),2013,41(2):167-174.
    [10]李玉姣.生物质炭及其复合材料的制备及应用性能研究[D].长春:吉林大学,2015.
    [11]徐继红,许少薇,李慧玲,等.LS-g-PAA/AMPS/APT树脂对亚甲基蓝吸附性能[J].精细化工,2016,33(5):497-503.
    [12]程辉,余剑,姚梅琴,等.木质素慢速热解机理[J].化工学报,2013,64(5):1757-1765.
    [13]丁华毅.生物炭的环境吸附行为及在土壤重金属镉污染治理中的应用[D].厦门:厦门大学,2014.
    [14]吴顺延,张守玉,姚云隆,等.成型生物质高温炭化及成型炭理化性能研究[J].热能动力工程,2017,32(12):106-112.
    [15]韦思业.不同生物质原料和制备温度对生物炭物理化学特征的影响[D].广州:中国科学院广州地球化学研究所,2017.
    [16]乔娜.玉米芯和松子壳的水热碳化及其产物吸附性能研究[D].大连:大连理工大学,2015.
    [17]Ahmad M,Rajapaksha A U,Lim J E,et al.Biochar as a sorbent for contaminant management in soil and water:A review[J].Chemosphere,2014,99:19-33.
    [18]Mohan D,Sarswat A,Ok Y S,et al.Organic and inorganic contaminants removal from water with biochar,a renewable,low cost and sustainable adsorbent-A critical review[J].Bioresource Technology,2014,160:191-202.
    [19]Jakab E,Till F,Szekely T.Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test[J].Journal of Analytical and Applied Pyrolysis,1995,35:167-179.
    [20]Monteil-Rivera F,Phuong M,Ye M,et al.Isolation and characterization of herbaceous lignins for applications in biomaterials[J].Industrial Crops and Products,2013,41:356-364.
    [21]朱卫勇.生物炭高效吸附去除水中有机污染物的机理研究[D].郑州:华北水利水电大学,2017.
    [22]王格格,李刚,陆江银,等.热解工艺对污泥制备生物炭物理结构的影响[J].环境工程学报,2016,10(12):7289-7293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700