矢量光场与激光焦场定制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tailoring Laser Focal Fields with Vectorial Optical Fields
  • 作者:陈建 ; 詹其文
  • 英文作者:Chen Jian;Zhan Qiwen;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology;Department of Electro-Optics and Photonics,University of Dayton;
  • 关键词:物理光学 ; 偏振态 ; 矢量光场 ; 焦场定制 ; 矢量衍射 ; 微纳光学
  • 英文关键词:physical optics;;polarization state;;vectorial optical field;;focused field tailoring;;vector diffraction;;micro-nano optics
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:上海理工大学光电信息与计算机工程学院;代顿大学电光学与光子学系;
  • 出版日期:2018-10-29 06:37
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家自然科学基金(61805142)
  • 语种:中文;
  • 页:GXXB201901003
  • 页数:14
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:37-50
摘要
概述了矢量光场的基本理论及常见的生成方法,详细介绍了基于空间光调制器的矢量光场生成系统及性能改善方法。回顾了强聚焦下的矢量衍射理论,重点介绍了激光焦场强度分布、偏振指向及自旋指向的定制方法;介绍了定制焦场在显微成像、定向耦合等方面的应用。
        The basic theory and common generation methods of vectorial optical fields are reviewed. The vectorial optical field generator based on spatial light modulator and its recent improvements in performances are introduced in detail. An overview of the vector diffraction theory under tightly focusing is offered, and the methods for tailoring the intensity distribution, polarization direction and spin orientation within the optical focal fields are highlighted.The applications of the tailored focal field in microscopy, directional coupling and so on are briefly discussed.
引文
[1] Bliokh K Y, Rodriguez-Fortuno F J, Nori F, et al.Spin-orbit interactions of light[J]. Nature Photonics,2015, 9(12):796-808.
    [2] Zhan Q W, Leger J R. High-resolution imaging ellipsometer[J]. Applied Optics, 2002, 41(22):4443-4450.
    [3] Zhan Q W, Leger J R. Measurement of surface features beyond the diffraction limit with an imaging ellipsometer[J]. Optics Letters, 2002, 27(10):821-823.
    [4] Zhan Q W, Leger J R. Microellipsometer with radial symmetry[J]. Applied Optics, 2002, 41(22):4630-4637.
    [5] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245):410-413.
    [6] Li X P, Zhang Q M, Chen X, et al. Giant refractiveindex modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording[J]. Scientific Reports, 2013, 3:2819.
    [7] Gu M, Li X P, Cao Y Y. Optical storage arrays:a perspective for future big data storage[J]. Light:Science&Applications, 2014, 3(5):e177.
    [8] Ren H R, Li X P, Gu M. Polarization-multiplexed multifocal arrays by aπ-phase-step-modulated azimuthally polarized beam[J]. Optics Letters,2014, 39(24):6771-6774.
    [9] Dolan P R, Li X P, Storteboom J, et al. Complete determination of the orientation of NV centers with radially polarized beams[J]. Optics Express, 2014,22(4):4379-4387.
    [10] Li X P, Lan T H, Tien C H, et al. Threedimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3:998.
    [11] Simon H J, Bloembergen N. Second-harmonic light generation in crystals with natural optical activity[J].Physical Review, 1968, 171(3):1104-1114.
    [12] Konishi K, Higuchi T, Li J, et al. Polarizationcontrolled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry[J].Physical Review Letters, 2014, 112(13):135502.
    [13] Libster-Hershko A, Trajtenberg-Mills S, Arie A.Dynamic control of light beams in second harmonic generation[J]. Optics Letters, 2015, 40(9):1944-1947.
    [14] Cizmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J].Nature Photonics, 2010, 4(6):388-394.
    [15] Grier D G. A revolution in optical manipulation[J].Nature, 2003, 424(6950):810-816.
    [16] Liesener J, Reicherter M, Haist T, et al. Multifunctional optical tweezers using computer-generated holograms[J]. Optics Communications, 2000, 185(1):77-82.
    [17] Eriksen R L, Daria V R, Rodrigo P J, et al.Computer-controlled orientation of multiple opticallytrapped microscopic particles[J]. Microelectronic Engineering, 2003, 67(68):872-878.
    [18] Skelton S E, Sergides M, Saija R, et al. Trapping volume control in optical tweezers using cylindrical vector beams[J]. Optics Letters, 2013, 38(1):28-30.
    [19] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15):3377-3382.
    [20] Liang Y S, Yao B L, Lei M, et al. Optical micromanipulation based on spatial modulation of optical fields[J]. Acta Optica Sinica, 2016, 36(10):1026003.梁言生,姚保利,雷铭,等.基于空间光场调控技术的光学微操纵[J].光学学报,2016, 36(10):1026003.
    [21] Zhao Y Q, Edgar J S, Jeffries G D M, et al. Spin-toorbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters,2007, 99(7):073901.
    [22] Marrucci L. Spin gives direction[J]. Nature Physics,2015, 11(1):9-10.
    [23] Espinosa-Soria A, Rodríguez-Fortuno F J, Griol A,et al. On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light[J]. Nano Letters,2017, 17(5):3139-3144.
    [24] Rodriguez-Herrera O G, Lara D, Bliokh K Y, et al.Optical nanoprobing via spin-orbit interaction of light[J]. Physical Review Letters, 2010, 104(25):253601.
    [25] Aiello A, Banzer P, Neugebauer M, et al. From transverse angular momentum to photonic wheels[J].Nature Photonics, 2015, 9(12):789-795.
    [26] Cardano F, Marrucci L. Spin-orbit photonics[J].Nature Photonics, 2015, 9(12):776-778.
    [27] Pichler H, Ramos T, Daley A J, et al. Quantumoptics of chiral spin networks[J]. Physical Review A, 2015, 91(4):042116.
    [28] Neugebauer M, Bauer T, Banzer P, et al.Polarization tailored light driven directional optical nanobeacon[J]. Nano Letters, 2014, 14(5):2546-2551.
    [29] Rodriguez-Fortuno F J, Marino G, Ginzburg P, et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes[J].Science, 2013, 340(6130):328-330.
    [30] Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light[J]. Science, 2014, 346(6205):67-71.
    [31] Rubinsztein-Dunlop H, Forbes A, Berry M V, et al.Roadmap on structured light[J]. Journal of Optics,2016, 19(1):013001.
    [32] Bauer T, Orlov S, Peschel U, et al.Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams[J]. Nature Photonics,2014, 8(1):23-27.
    [33] Bliokh K Y, Nori F. Transverse and longitudinal angular momenta of light[J]. Physics Reports,2015, 592:1-38.
    [34] Yang S Y, Zhan Q W. Third-harmonic generation microscopy with tightly focused radial polarization[J].Journal of Optics A:Pure and Applied Optics, 2008,10(12):125103.
    [35] Lieb M A, Zavislan J M, Novotny L. Singlemolecule orientations determined by direct emission pattern imaging[J]. Journal of the Optical Society of America B, 2004, 21(6):1210-1215.
    [36] Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics[J].Science, 2013, 340(6133):724-726.
    [37] ChenJ, Wan C H, Zhan Q W. Vectorial optical fields:recent advances and future prospects[J].Science Bulletin, 2018, 63(1):54-74.
    [38] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express,2004, 12(22):5448-5456.
    [39] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015,7(1):66-106.
    [40] Cheng W, Haus J W, Zhan Q W. Propagation of vector vortex beams through a turbulent atmosphere[J].Optics Express, 2009, 17(20):17829-17836.
    [41] Wang J, Yang J Y, Fazal I M, et al. Terabit freespace data transmission employing orbital angularmomentum multiplexing[J]. Nature Photonics,2012, 6(7):488-496.
    [42] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140):1545-1548.
    [43] Scott T F, Kowalski B A, Sullivan A C, et al. Twocolor single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science,2009, 324(5929):913-917.
    [44] Liu S, Li P, Zhang Y, et al. Transmission and control of polarization modulation light filed in free space[J]. Acta Optica Sinica,2016,36(10):1026001.刘圣,李鹏,章毅,等.自由空间中偏振调制光场的传输及控制[J].光学学报,2016, 36(10):1026001.
    [45] Gan Z S, Cao Y Y, Evans R A, et al. Threedimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4:2061.
    [46] Zhan Q W. Cylindrical vector beams:from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1):1-57.
    [47] Zhan Q W. Vectorial optical fields:fundamentals and applications[M]. Singapore:World Scientific, 2013:1-24.
    [48] Forbes A. Laser beam propagation:generation and propagation of customized light[M]. Boca Raton:CRC Press, 2014:239-272.
    [49] Brown T, Zhan Q W. Introduction:unconventional polarization states of light focus issue[J]. Optics Express, 2010, 18(10):10775-10776.
    [50] Zhan Q W, Forbes A. Editorial for special issue on complex optical fields[J]. Chinese Optics Letters,2017, 15(3):030001.
    [51] Yuan X C, Yu S Y, Urbach H P. Optical vortices and vector beams[J]. Photonics Research, 2016,4(5):OVB1.
    [52] Omatsu T, Litchinitser N M, Brasselet E, et al.Focus issue introduction:synergy of structured light and structured materials[J]. Optics Express, 2017,25(14):16681-16685.
    [53] Hall D G. Vector-beam solutions of Maxwell's wave equation[J]. Optics Letters, 1996, 21(1):9-11.
    [54] Beckley A M, Brown T G, Alonso M A. Full poincare beams[J]. Optics Express, 2010, 18(10):10777-10785.
    [55] Yonezawa K, Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of the birefringence of a C-cut Nd:YVO4 crystal[J].Optics Letters, 2006, 31(14):2151-2153.
    [56] MacHavariani G, Lumer Y, Moshe I, et al.Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes[J].Applied Optics, 2007, 46(16):3304-3310.
    [57] Yonezawa K, Kozawa Y, Sato S. Compact laser with radial polarization using birefringent laser medium[J].Japanese Journal of Applied Physics, 2007, 46(8A):5160-5163.
    [58] Bisson J F, Li J, Ueda K, et al. Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon[J]. Optics Express, 2006,14(8):3304-3311.
    [59] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 1972, 20(7):266-267.
    [60] Erdogan T, King O, Wicks G W, et al. Circularly symmetric operation of a concentric-circle-grating,surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser[J]. Applied Physics Letters,1992, 60(16):1921-1923.
    [61] Ahmed M A, Voss A, Vogel M M, et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers[J].Optics Letters, 2007, 32(22):3272-3274.
    [62] Cui X Q, He Z W, Zhang W D, et al. Linear-cavity cylindrical vector lasers based on all-fiber mode converters[J]. Optics Communications, 2018, 427:306-310.
    [63] Zhang X C, Zhang W D, Li C Y, et al. All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating[J]. Journal of Optics, 2018, 20(7):075608.
    [64] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nature Communications,2013, 4:2289.
    [65] Zhou R J, Ibarra-Escamilla B, Haus J W, et al.Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6μm wavelength[J]. Applied Physics Letters, 2009, 95(19):191111.
    [66] Zhan Q W, Leger J R. Interferometric measurement of the geometric phase in space-variant polarization manipulations[J]. Optics Communications, 2002,213(4/5/6):241-245.
    [67] Yamaguchi R, Nose T, Sato S. Liquid crystal polarizers with axially symmetrical properties[J]. Japanese Journal of Applied Physics, 1989, 28(9):1730-1731.
    [68] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23):1948-1950.
    [69] Passilly N, Treussart F, Hierle R, et al. Simple interferometric technique for generation of a radially polarized light beam[J]. Journal of the Optical Society of America A, 2005, 22(5):984-991.
    [70] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J].Optics Letters, 2007, 32(24):3549-3551.
    [71] Beversluis M R, Novotny L, Stranick S J.Programmable vector point-spread function engineering[J]. Optics Express, 2006, 14(7):2650-2656.
    [72] Waller E H, von Freymann G. Independent spatial intensity, phase and polarization distributions[J].Optics Express, 2013,21(23):28167-28174.
    [73] Tripathi S, Toussaint K C. Versatile generation of optical vector fields and vector beams using a noninterferometric approach[J]. Optics Express, 2012,20(10):10788-10795.
    [74] Moreno I,Iemmi C, Campos J, et al. Jones matrix treatment for optical Fourier processors with structured polarization[J]. Optics Express, 2011,19(5):4583-4594.
    [75] Maurer C, Jesacher A, Fürhapter S, et al.Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 2007, 9(3):78.
    [76] Maluenda D, Juvells I, Martinez-Herrero R, et al.Reconfigurable beams with arbitrary polarization and shape distributions at a given plane[J]. Optics Express, 2013, 21(5):5432-5439.
    [77] Kenny F, Lara D, Rodriguez-Herrera O G, et al.Complete polarization and phase control for focusshaping in high-NA microscopy[J]. Optics Express,2012, 20(13):14015-14029.
    [78] Moreno I, Davis J A, Hernandez T M, et al.Complete polarization control of light from a liquid crystal spatial light modulator[J]. Optics Express,2012, 20(1):364-376.
    [79] Ma C J, Di J L, Zhang Y, et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 2018, 43(14):3333-3336.
    [80] Chen Z Z, Zeng T T, Qian B J, et al. Complete shaping of optical vector beams[J]. Optics Express,2015, 23(14):17701-17710.
    [81] Ping C C, Liang C H, Wang F, et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties[J]. Optics Express, 2017,25(26):32475-32490.
    [82] Liu S, Qi S X, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. PhotonicsResearch, 2018, 6(4):228-233.
    [83] Han W, Yang Y F, Cheng W, et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Optics Express, 2013, 21(18):20692-20706.
    [84] Chen J, Wan C H, Kong L J, et al. Precise transverse alignment of spatial light modulator sections for complex optical field generation[J].Applied Optics, 2017, 56(10):2614-2620.
    [85] Han W, Cheng W, Zhan Q W. Design and alignment strategies of 4f systems used in the vectorial optical field generator[J]. Applied Optics, 2015, 54(9):2275-2278.
    [86] Chen J, Kong L J, Zhan Q W. Demonstration of a vectorial optical field generator with adaptive close loop control[J]. Review of Scientific Instruments,2017, 88(12):125111.
    [87] Wolf E. Electromagnetic diffraction in optical systems. I. An integral representation of the image field[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1959, 253(1274):349-357.
    [88] Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1959, 253(1274):358-379.
    [89] Jahn K, Bokor N. Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields[J].Optics Communications, 2013, 288:13-16.
    [90] Maluenda D, Martinez-Herrero R, Juvells I, et al.Synthesis of highly focused fields with circular polarization at any transverse plane[J]. Optics Express, 2014, 22(6):6859-6867.
    [91] Martinez-Herrero R, Juvells I, Carnicer A. On the physical realizability of highly focused electromagnetic field distributions[J]. Optics Letters, 2013, 38(12):2065-2067.
    [92] Chen Z Z, Zeng T T, Ding J P. Reverse engineering approach to focus shaping[J]. Optics Letters, 2016,41(9):1929-1932.
    [93] Chen R P, Chen Z Z, Chew K H, et al. Structured caustic vector vortex optical field:manipulating optical angular momentum flux and polarization rotation[J]. Scientific Reports, 2015, 5:10628.
    [94] Wang J M, Chen W B, Zhan Q W. Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams[J]. Journal of Optics, 2012, 14(5):055004.
    [95] Wang J M, Chen W B, Zhan Q W. Three-dimensional focus engineering using dipole array radiation pattern[J]. Optics Communications,2011, 284(12):2668-2671.
    [96] Chen W B, Zhan Q W. Three dimensional polarization control in 4Pi microscopy[J]. Optics Communications, 2011, 284(1):52-56.
    [97] Wang J M, Chen W B, Zhan Q W. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation[J].Optics Express, 2010, 18(21):21965-21972.
    [98] Zhan Q W, Leger J. Focus shaping using cylindrical vector beams[J]. Optics Express, 2002, 10(7):324-331.
    [99] Chen W B, Zhan Q W. Three-dimensional focus shaping with cylindrical vector beams[J], Optics Communications, 2006, 265(2):411-417.
    [100] Chen W B, Zhan Q W. Diffraction limited focusing with controllable arbitrary three-dimensional polarization[J]. Journal of Optics, 2010, 12(4):045707.
    [101] Chen J, Wan C H, Kong L J, et al. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum[J]. Optics Express, 2017,25(8):8966-8974.
    [102] Chen J, Wan C H, Kong L J, et al. Tightly focused optical field with controllable photonic spin orientation[J]. Optics Express, 2017, 25(16):19517-19528.
    [103] Jia B H, Gan X S, Gu M. Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD[J]. Optics Express, 2005,13(18):6821-6827.
    [104] Hao B, Leger J. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam[J]. Optics Express, 2007,15(6):3550-3556.
    [105] Biss D P, Brown T G. Polarization-vortex-driven second-harmonic generation[J]. Optics Letters,2003, 28(11):923-925.
    [106] Carrasco S, Saleh B E A, Teich M C, et al.Second-and third-harmonic generation with vector Gaussian beams[J]. Journal of the Optical Society of America B, 2006, 23(10):2134-2141.
    [107] Biss D P, Youngworth K S, Brown T G. Dark-field imaging with cylindrical-vector beams[J]. Applied Optics, 2006, 45(3):470-479.
    [108] Bokor N, Davidson N. Toward a spherical spot distribution with 4πfocusing of radially polarized light[J]. Optics Letters, 2004, 29(17):1968-1970.
    [109] Novotny L, Beversluis M R, Youngworth K S, etal. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 2001, 86(23):5251.
    [110] Jia B H, Kang H, Li J F, et al. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method[J]. Optics Letters, 2009,34(13):1918-1920.
    [111] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009,3(3):144-147.
    [112] Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11):915-918.
    [113] Kaschke J, Wegener M. Gold triple-helix midinfrared metamaterial by STED-inspired laser lithography[J]. Optics Letters, 2015, 40(17):3986-3989.
    [114] Li L, Gattass R R, Gershgoren E, et al. Achievingλ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009,324(5929):910-913.
    [115] Sun Z B, Dong X Z, Chen W Q, et al. Multicolor polymer nanocomposites:in situ synthesis and fabrication of 3D microstructures[J]. Advanced Materials, 2008, 20(5):914-919.
    [116] Banzer P, Neugebauer M, Aiello A, et al. The photonic wheel-demonstration of a state of light with purely transverse angular momentum[J]. Journal of the European Optical Society:Rapid Publications,2013, 8:13032.
    [117] Mitsch R, Sayrin C, Albrecht B, et al. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide[J]. Nature Communications, 2014, 5:5713.
    [118] Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Optics Letters, 2005, 30(8):848-850.
    [119] Zhan Q W. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams[J]. Journal of Optics A:Pure and Applied Optics, 2003, 5(3):229-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700