黄山土壤细菌群落和酶活性海拔分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Elevational Distribution Characteristics of Soil Bacterial Community and Enzyme Activities in Mount Huangshan
  • 作者:姚兰 ; 胡立煌 ; 张焕朝 ; 方炎明 ; 王艮梅
  • 英文作者:YAO Lan;HU Li-huang;ZHANG Huan-chao;FANG Yan-ming;WANG Gen-mei;College of Forestry,Nanjing Forestry University;College of Biology and Environment,Nanjing Forestry University;
  • 关键词:黄山 ; 细菌群落结构 ; Illumina高通量测序 ; 土壤pH ; 土壤酶活性
  • 英文关键词:Mount Huangshan;;bacterial community structure;;Illumina high-throughput sequencing;;soil p H;;soil enzyme activity
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南京林业大学林学院;南京林业大学生物与环境学院;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:江苏省研究生科研与实践创新计划项目(KYCX17_0855);; 安徽省黄山区维管植物多样性观测项目(2016-2017);; 环境保护部-生物多样性保护专项(021108024);; 江苏省高校优势学科建设工程项目(PAPD)
  • 语种:中文;
  • 页:HJKZ201902045
  • 页数:10
  • CN:02
  • ISSN:11-1895/X
  • 分类号:349-358
摘要
黄山具有保存较完整的生态系统及明显的地势高差,为研究中亚热带森林生态系统土壤微生物群落海拔分布格局提供天然场所.本研究在黄山景区670~1 870 m按每100 m的间隔采集土样,利用Illumina MiSeq高通量测序技术分析土壤细菌群落结构及多样性的海拔变化特征,同时测定相关土壤理化性质和土壤酶活性.结果表明:(1)土壤全氮、碱解氮、全钾和总有机碳含量均存在显著海拔差异(P <0. 01),且总体上随着海拔升高而增加;土壤蔗糖酶活性存在显著海拔差异(P <0. 01),且总体上随海拔升高而增强,但酸性磷酸酶和脲酶活性无显著海拔分异(P> 0. 05);(2)将12个海拔梯度分为高中低3组(低海拔670~875 m;中海拔1 080~1 370 m;高海拔1 460~1 780 m),发现土壤细菌OTU数目:中海拔>低海拔>高海拔,但是高、中、低海拔的差异不明显;(3)在875~1 370 m小范围海拔内,土壤细菌群落多样性沿海拔呈单峰模式分布;而在670~1 780 m整个海拔范围内,土壤细菌群落多样性无明显海拔分布模式;(4)所有样地中,相对丰度大于3%的优势菌门共7个,优势菌目共15个;(5)相关性热图分析表明,土壤p H对不同海拔土壤细菌群落结构差异性影响最大. Pearson相关性分析和偏Mantel分析表明,细菌群落α多样性(P <0. 01)和β多样性(偏Mantel r=0. 560,P=0. 001)主要受土壤p H影响.因此,土壤p H是决定黄山不同海拔土壤细菌群落结构及多样性的主要环境因子.
        Mount Huangshan has a well-preserved ecosystem and obvious differences in vertical geography,which provide a natural laboratory for studying the altitudinal distribution patterns of soil microbial communities in a mid-subtropical forest ecosystem. The soil bacterial community structure and diversity of the samples collected every 100 m from 670 to 1870 m on the south slope of Mount Huangshan were examined using Illumina MiSeq high-throughput sequencing technology. The soil physicochemical properties and soil enzyme activities of the samples were also measured to explore the relationship between bacterial communities and soil properties as well as enzyme activities. The results showed that(1) The contents of soil total nitrogen,available nitrogen,total potassium,and total organic carbon were significantly different across the altitudes( P < 0. 01) and generally increased as altitude increased. The soil sucrase activities across altitudes were significantly different( P < 0. 01),and generally increased as altitude increased. However,there was no significant difference in acid phosphatase and urease activities between different altitudes( P > 0. 05).(2) The 12 elevational gradients were divided into three groups: low altitude( 670-875 m),medium altitude( 1 080-1 370 m),and high altitude( 1 460-1 780 m). The OTUs in low altitude sites were greater than in high altitude sites but lower compared to medium altitude sites.However,the differences in OTUs across altitude sites were not significant.(3) The soil bacterial community diversity showed a unimodal pattern in a small range of altitudes from 875-1 370 m,although no apparent trend was observed at the altitudes from 670-1 780 m.(4) There were 7 dominant phyla and 15 dominant orders with a relative abundance of more than 3% in all soil samples.(5) Correlation heat map analysis between the top 15 bacterial phyla and soil physicochemical properties as well as enzyme activities showed that soil p H had the greatest effect on the differences in soil bacterial community structure across the different altitudes. Pearson correlation analysis and Partial Mantel test also showed that bacterial community α-diversity( P < 0. 01) and β-diversity( Partial Mantel r = 0. 560,P = 0. 001) were mainly affected by soil p H. Consequently,soil p H was the key environmental factor determining the soil bacterial community structure and diversity across the different altitudes on Mount Huangshan.
引文
[1] Li J B,Shen Z H,Li C N,et al. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China[J].Frontiers in Microbiology,2018,9:569.
    [2] Ren C J,Zhang W,Zhong Z K,et al. Differential responses of soil microbial biomass,diversity,and compositions to altitudinal gradients depend on plant and soil characteristics[J]. Science of the Total Environment,2018,610-611:750-758.
    [3]宋贤冲,郭丽梅,田红灯,等.猫儿山不同海拔植被带土壤微生物群落功能多样性[J].生态学报,2017,37(16):5428-5435.Song X C,Guo L M,Tain H D,et al. Variation of soil microbial community diversity along an elevational gradient in the Mao'er Mountain forest[J]. Acta Ecologica Sinica,2017,37(16):5428-5435.
    [4] Delgado-Baquerizo M,Maestre F T,Reich P B,et al. Carbon content and climate variability drive global soil bacterial diversity[J]. Ecological Monographs,2016,86(3):373-390.
    [5] Wang J T,Cao P,Hu H W,et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt.Shegyla on the Tibetan Plateau[J]. Microbial Ecology,2015,69(1):135-145.
    [6] Singh D,Takahashi K,Kim M,et al. A hump-backed trend in bacterial diversity with elevation on Mount Fuji,Japan[J].Microbial Ecology,2012,63(2):429-437.
    [7] Singh D,Lee-Cruz L,Kim W S,et al. Strong elevational trends in soil bacterial community composition on Mt. Halla,South Korea[J]. Soil Biology and Biochemistry,2014,68:140-149.
    [8] Fierer N,Mccain C M,Meir P,et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology,2011,92(4):797-804.
    [9] Shen C C,Ni Y Y,Liang W J,et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology,2015,6:582.
    [10] Han D X,Wang N,Sun X,et al. Biogeographical distribution of bacterial communities in Changbai Mountain,Northeast China[J]. Microbiologyopen,2018,7(2):e00529.
    [11] Liu D,Wu X,Shi S L,et al. A hollow bacterial diversity pattern with elevation in Wolong Nature Reserve, Western Sichuan Plateau[J]. Journal of Soils and Sediments,2016,16(10):2365-2374.
    [12] Baas-Becking L G M. Geobiologie of inleiding tot de milieukunde[M]. Netherlands:Van Stockum and Zoon,1934.
    [13] De Wit R,Bouvier T.‘Everything is everywhere,but,the environment selects’; what did Baas Becking and Beijerinck really say?[J]. Environmental Microbiology,2006,8(4):755-758.
    [14] Yang T, Adams J M, Shi Y, et al. Fungal community assemblages in a high elevation desert environment:Absence of dispersal limitation and edaphic effects in surface soil[J]. Soil Biology and Biochemistry,2017,115:393-402.
    [15] Martiny J B H,Bohannan B J M,Brown J H,et al. Microbial biogeography:putting microorganisms on the map[J]. Nature Reviews Microbiology,2006,4(2):102-112.
    [16] Shen C C,Xiong J B,Zhang H Y,et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry,2013,57:204-211.
    [17] Chen Y L,Xu T L,Veresoglou S D,et al. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China[J]. Soil Biology and Biochemistry,2017,110:12-21.
    [18]王振中,张友梅,李忠武.黄山森林生态系统土壤动物群落结构特征及其多样性[J].林业科学,2009,45(10):168-173.Wang Z Z,Zhang Y M,Li Z W. Structural characteristics and biodiversity of soil animal community in Huangshan forest systems[J]. Scientia Silvae Sinicae,2009,45(10):168-173.
    [19]巩劼,陆林,晋秀龙,等.黄山风景区旅游干扰对植物群落及其土壤性质的影响[J].生态学报,2009,29(5):2239-2251.Gong J,Lu L,Jin X L,et al. Impacts of tourist disturbance on plant communities and soil properties in Huangshan Mountain scenic area[J]. Acta Ecologica Sinica,2009,29(5):2239-2251.
    [20] Yang A N, Lu L, Zhang N. The diversity of arbuscular mycorrhizal fungi in the subtropical forest of Huangshan(Yellow Mountain), East-Central China[J]. World Journal of Microbiology and Biotechnology,2011,27(10):2351-2358.
    [21]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000.Bao S D. Soil and agricultural chemistry analysis(3rd ed.)[M]. Beijing:China Agriculture Press,2000.
    [22]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [23]杨立宾,隋心,朱道光,等.大兴安岭兴安落叶松林土壤真菌群落特征研究[J].中南林业科技大学学报,2017,37(12):76-84.Yang L B,Sui X,Zhu D G,et al. Study on fungal communities characteristics of different Larix gmelini forest types in cold temperate zone[J]. Journal of Central South University of Forestry&Technology,2017,37(12):76-84.
    [24]乔沙沙,周永娜,刘晋仙,等.关帝山针叶林土壤细菌群落结构特征[J].林业科学,2017,53(2):89-99.Qiao S S,Zhou Y N,Liu J X,et al. Characteristics of soil bacterial community structure in coniferous forests of Guandi Mountains[J]. Scientia Silvae Sinicae,2017,53(2):89-99.
    [25]李相楹,张维勇,刘峰,等.不同海拔高度下梵净山土壤碳、氮、磷分布特征[J].水土保持研究,2016,23(3):19-24.Li X Y, Zhang W Y, Liu F, et al. The distribution characteristics of soil carbon,nitrogen,phosphorus at different altitudes in Fanjingshan Mountain[J]. Research of Soil and Water Conservation,2016,23(3):19-24.
    [26]刘月华,位晓婷,钟梦莹,等.甘南高寒草甸草原不同海拔土壤理化性质分析[J].草原与草坪,2014,34(3):1-7.Liu Y H,Wei X T,Zhong M Y,et al. Analysis on the soil physicochemical properties of alpine meadow at different altitudes in Gannan[J]. Grassland and Turf,2014,34(3):1-7.
    [27]秦松,樊燕,刘洪斌,等.地形因子与土壤养分空间分布的相关性研究[J].水土保持研究,2008,15(1):46-49,52.Qin S,Fan Y,Liu H B,et al. Study on the relations between topographical factors and the spatial distributions of soil nutrients[J]. Research of Soil and Water Conservation,2008,15(1):46-49,52.
    [28]王平,任宾宾,易超,等.轿子山自然保护区土壤理化性质垂直变异特征与环境因子关系[J].山地学报,2013,31(4):456-463.Wang P,Ren B B,Yi C,et al. The correlation between soil characteristics and environmental factors along altitude gradient of Jiaozi Mountain Nature Reserve[J]. Mountain Research,2013,31(4):456-463.
    [29] Liu G M,Zhang X C,Wang X P,et al. Soil enzymes as indicators of saline soil fertility under various soil amendments[J]. Agriculture,Ecosystems&Environment,2017,237:274-279.
    [30] Chang E H,Chen T H,Tian G,et al. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations[J]. Applied Soil Ecology,2016,98:213-220.
    [31]曹瑞,吴福忠,杨万勤,等.海拔对高山峡谷区土壤微生物生物量和酶活性的影响[J].应用生态学报,2016,27(4):1257-1264.Cao R,Wu F Z,Yang W Q,et al. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions[J]. Chinese Journal of Applied Ecology,2016,27(4):1257-1264.
    [32]斯贵才,袁艳丽,王建,等.藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化[J].微生物学通报,2014,41(10):2001-2011.Si G C,Yuan Y L,Wang J,et al. Microbial community and soil enzyme activities along an altitudinal gradient in Sejila mountains[J]. Microbiology China,2014,41(10):2001-2011.
    [33] Siles J A,Margesin R. Abundance and diversity of bacterial,archaeal,and fungal communities along an altitudinal gradient in alpine forest soils:what are the driving factors?[J]. Microbial Ecology,2016,72(1):207-220.
    [34] Zheng H F,Liu Y,Zhang J,et al. Factors influencing soil enzyme activity in China's forest ecosystems[J]. Plant Ecology,2018,219(1):31-44.
    [35] Zhang Y G,Cong J,Lu H,et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain,China[J]. Microbial Biotechnology,2015,8(4):739-746.
    [36] Xiao L,Liu G B,Xue S. Effects of vegetational type and soil depth on soil microbial communities on the Loess Plateau of China[J]. Archives of Agronomy and Soil Science,2016,62(12):1665-1677.
    [37] He Z,Van Nostrand J D,Deng Y,et al. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities[J]. Frontiers of Environmental Science&Engineering in China,2011,5(1):1-20.
    [38] Zi H B,Hu L,Wang C T,et al. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow[J]. European Journal of Soil Science,2018,69(3):429-438.
    [39] Lauber C L,Hamady M,Knight R,et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology,2009,75(15):5111-5120.
    [40] Nottingham A T,Turner B L,Whitaker J,et al. Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes[J]. Biogeochemistry,2016,127(2-3):217-230.
    [41]马转转,乔沙沙,曹苗文,等.环境选择和扩散限制驱动温带森林土壤细菌群落的构建[J].应用生态学报,2018,29(4):1179-1189.Ma Z Z,Qiao S S,Cao M W,et al. Environmental selection and dispersal limitation drive the assemblage of bacterial community in temperate forest soils[J]. Chinese Journal of Applied Ecology,2018,29(4):1179-1189.
    [42] Xiao S H,You H M,You W B,et al. Rhizosphere and bulk soil enzyme activities in a Nothotsuga longibracteata forest in the Tianbaoyan National Nature Reserve, Fujian Province, China[J]. Journal of Forestry Research,2017,28(3):521-528.
    [43] Lin Y T,Whitman W B,Coleman D C,et al. Changes of soil bacterial communities in bamboo plantations at different elevations[J]. FEMS Microbiology Ecology,2015,91(5):fiv033.
    [44] Landesman W J,Nelson D M,Fitzpatrick M C. Soil properties and tree species drive-diversity of soil bacterial communities[J]. Soil Biology and Biochemistry,2014,76:201-209.
    [45]乔沙沙,周永娜,柴宝峰,等.关帝山森林土壤真菌群落结构与遗传多样性特征[J].环境科学,2017,38(6):2502-2512.Qiao S S,Zhou Y N,Chai B F,et al. Characteristics of fungi community structure and genetic diversity of forests in Guandi Mountains[J]. Environmental Science,2017,38(6):2502-2512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700