一次大范围对流大风及局地短时强降水多尺度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A multi-scale analysis of wide range of convective winds and local short-term heavy precipitation
  • 作者:吴迎旭 ; 周一 ; 周奕函 ; 孟莹莹 ; 李兴权 ; 谢玉静
  • 英文作者:WU Yingxu;ZHOU Yi;ZHOU Yihan;MENG Yingying;LI Xingquan;XIE Yujing;Heilongjiang Meteorological Observatory;
  • 关键词:多尺度分析 ; 大范围大风 ; 局地强降水 ; 极端强降水
  • 英文关键词:multi-scale analysis;;wide range of winds;;local rainfall;;extremely heavy precipitation
  • 中文刊名:ZRZH
  • 英文刊名:Journal of Natural Disasters
  • 机构:黑龙江省气象台;
  • 出版日期:2019-02-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:v.28
  • 基金:中国气象局预报员专项(CMAYBY2018-024,CMAYBY2018-022);; 黑龙江省院士工作站(YSZD201801,YSMS201704)~~
  • 语种:中文;
  • 页:ZRZH201901022
  • 页数:14
  • CN:01
  • ISSN:23-1324/X
  • 分类号:186-199
摘要
本文利用常规资料、NECP1°×1°再分析资料、EC细网格、FY-2静止气象卫星云图、新一代天气雷达、区域自动站资料对2017年7月18-19日发生在黑龙江省北部至东南部大范围大风天气以及南部、东南部局地强降水过程进行详细的多尺度分析。这次过程中,18日对流云团前沿的飑线发展移动过程中在黑龙江北部和中部地区出现对流大风,飑线成熟后期在黑龙江南部、东南部产生大风同时伴有局地强降水,19日中午前后黑龙江南部又出现新的对流云团产生局地极端强降水。分析结果表明:高空弱槽东移加强并推动副热带高压南撤,同时配合地面气旋底部多次分裂出尺度和强度相对较小的闭合低压是强天气产生的环境背景;副高南撤使得水汽通道畅、水汽集中程度加强,上冷下暖,干侵入、大的对流有效位能、逆温层的存在使高的能量得到短时间存储,最后在阵风锋、地形、中尺度辐合线、热力抬升等触发下集中释放是强对流天气产生和类型变化的根本原因;典型飑线和热带飑线均有出现,并观测到有界弱回波区、穹窿和前侧入流、风暴顶辐散等超级单体结构,这些超级单体之间出现断裂,引发强天气,并由于移速不同导致飑线走向的变化;超级单体的出现和出流边界的消失使得强降水开始产生或加强;强降水超级单体、列车效应、回波缓慢移动是产生强降水直接原因;冷区面积突然增大、云顶亮温陡降至低值后维持稳定、云顶亮温梯度增长速度变缓、多个小云团和大云团合并是强对流产生的初始时间。
        This paper uses conventional data, NECP 1°×1° reanalysis data, EC high resolution, FY-2 satellites of images, new generation weather radars, and regional automatic station data on 18-19 July 2017. Large range winds from northern to southeast Heilongjiang and local heavy rainfall in the southeast and southeast parts are detailed multi-scale analysis. During the process, convective Winds occurred in the north and central regions on the frontline of the convective cloud cluster on the 18 th during the development of the squall line. The strong winds in the south and southeastern were accompanied by local heavy rainfall at late mature stage of the squall line's maturation. The convective clouds produces extremely heavy precipitation. The results show: The eastward shift of the high-altitude weak trough strengthens and promotes the southward retreat of the subtropical high, while at the same time cooperating with the bottom of the ground cyclone to split the closed low pressure with relatively small scale and intensity is the environmental background for strong weather. The southward withdrawal of the subtropical high makes the water vapor channel smooth, the concentration of water vapor intensifies, the warm up and cool down, the dry intrusion, the large convection effective potential energy, and the inversion layer make Heilongjiang gather a lot of energy, and finally in the gust front, terrain, and mesoscale Convergence line, thermal lift and other triggers under concentrated release are the root causes of strong convective weather generation and type changes. The typical squall line and the tropical squall line all appeared, and the supercell structures such as the bounded weak echo zone, the radon and front inflow, and the storm top divergence were not observed. These supercells broke apart and caused strong weather, and due to the difference in the speed of movement. The emergence of supercells and the disappearance of outflow boundaries have led to the creation or strengthening of heavy precipitation. The supercell causes instantaneous rain intensity, train effects, and the stability of the echo is the direct cause of strong precipitation. The sudden increase in the cold area, the stabilization of the temperature at the top of the cloud ceiling, the stabilization of the temperature at the top of the cloud top, the gradual increase in the temperature gradient at the top of the cloud top, and the merger of multiple small cloud clusters and large cloud clusters are the initial time for strong convection.
引文
[1] 侯淑梅,王秀明,尉英华,等,山东省初秋一次大范围强对流过程落区和抬升触发机制分析[J]. 气象,2018.44(1):82-92.HOU Shumei, WANG Xiuming, WEI Yinghua, et al. Analysis of an extensive severe convection falling area and lifting trigger mechanism in early autumn at Shandong Province[J]. Meteorological Monthly, 2018. 44(1):82-92. (in Chinese)
    [2] Dowell Ⅲ C A. The distinction berween large-scale and me-oscale contribution to severe convection; a case study example[J]. Wea forecasting, 1987, 2(1): 3-16.
    [3] 郑永光, 张春喜, 陈炯, 等. 用NCEP资料分析华北暖季对流性天气的气候背景[J]. 北京大学学报:自然科学版, 2007. 43(5): 600-608.ZHENG Yongguang, ZHANG Chunxi, CHEN Jiong, et al. Climatic background of warm-season convective weather in north China based on the NCEP analysis[J]. Acta Scientiarum Naturalium Universitatis Pskinensis: Natural Science Edition. 2007, 43(5): 600-608. (in Chinese)
    [4] 何立富, 谌芸, 俞小鼎, 等. 分类强对流天气潜势预报技术[C]//2014海峡两岸灾害性天气分析与预报研讨会. 北京: 中国气象学会, 2014: 171-191. HE Lifu, CHEN Yun, YU Xiaoding, et al. Classification Strong Convective Weather Potential Prediction Technology[C]//2014 Cross-Strait Symposium on Severe Weather Analysis and Forecasting. Beijing: Chinese Meteorological Society, 2014: 171-191. (in Chinese)
    [5] 杨新林, 孙建华, 鲁蓉, 等. 华南雷暴大风天气的环境条件分布特征[J]. 气象, 2017, 43(7): 769-780. YANG Xinlin, SUN Jianhua, LU Rong, et al. Environmental characteristics of severe convective wind over south China[J]. Meteorological Monthly, 2017, 43(7): 769-780. (in Chinese)
    [6] 郑婧, 许爱华, 孙素琴, 等. 高空西北气流下特大暴雨的预报误差分析及思考[J]. 气象, 2018, 44(1): 93-106.ZHENG Jing, XU Aihua, SUN Suqin, et al. Forecast error analysis of extremely heavy rain under high-level northwest flow[J]. Meteorological Monthly, 2018, 44(1): 93-106. (in Chinese)
    [7] 何立富, 周庆亮, 湛芸, 等. 国家级强对流潜势预报业务进展与检验评估[J]. 气象, 2011, 37(7): 777-784.HE Lifu, ZHOU Qingliang, CHEN Yun, et al. Progress and test evaluation of national-level strong convection potential forecasting business[J]. Meteorological Monthly, 2011, 37(7): 777-784. (in Chinese)
    [8] 杨舒楠, 路屹雄, 于超. 一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析[J]. 气象, 2017, 43(1): 21-33.YANG Shunan, LU Yixiong, YU Chao. Analysis on mesoscale convective system and impact of low-level wind in a meiyu rainfall event[J]. Meteorological Monthly, 2017, 43(1): 21-33. (in Chinese)
    [9] 王丛梅, 俞小鼎, 李芷霞, 等. 太行山地形影响下的极端短时强降水分析[J]. 气象, 2017, 43(4): 425-433.WANG Congmei, YU Xiaoding, LI Zhixia, et al. Investigation of extreme flash-rain events on the impact of taihang mountain[J]. Meteorological Monthly, 2017, 43(4): 425-433. (in Chinese)
    [10] 王宏, 王丛梅, 高峰, 等. 承德市两次局地性短时暴雨过程的中尺度特征对比分析[J]. 气象, 2017, 43(12): 1507-1516.WANG Hong, WANG Congmeim, GAO Feng, et al. Comparative analysis on mesoscale characteristics of two local short-time severe rainstorm processes in chengde[J]. Meteorological Monthly, 2017, 43(12): 1507-1516. (in Chinese)
    [11] 郑永光, 张小玲, 周庆亮, 等. 强对流天气短时临近预报业务技术进展与挑战[J]. 气象, 2010, 36(7): 33-42.ZHENG Yongguang, ZHANG Xiaoling, ZHOU Qingliang, et al. Review on severe convective weather short-term forecasting and nowcasting[J]. Meteorological Monthly, 2010, 36(7): 33-42. (in Chinese)
    [12] 郑媛媛, 张雪晨, 朱红芳, 等. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象, 2014, 33(1): 261-269. ZHENG Yuanyuan, ZHANG Xuechen, ZHU Hongfang, et al. Study on the Influence of the northeast cold vortex on the formation of the jianghuai sui line[J]. Plateau Meteorology, 2014, 33(1): 261-269. (in Chinese)
    [13] 张宁, 苏爱芳, 史一丛. 2014年一次飑线的发展维持原因分析[J]. 气象, 2017, 43(11): 1383-1392. ZHANG Ning, SU Aifang, SHI Yicong. Causation analysis of evolution of a squall line in 2014[J]. Meteorological Monthly, 2017, 43(11): 1383-1392. (in Chinese)
    [14] Bluestein H B, Jain M H, 1985. Formation of mesoscale lines of pirecipitation: severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 42(16): 1711-1732.
    [15] Moller A R, Dowell Ⅲ C A, Foster M P, et al. The operation recognition of supercell thunderstorm environments and storm structures[J]. Wea Forecasting, 1994, 9(3): 327-347.
    [16] Fujita T T. Manual of Downburst Identification for Project Nimrod[M]//Satellite and Mesometeorology Research Project, SMRP Research Paper No.156, Chicago: University of Chicago, 1978: 104.
    [17] 高梦竹, 陈耀登, 章丽娜, 等. 对流移入杭州湾后飑线发展机制分析[J]. 气象, 2017, 46(1): 56-66.GAO Mengzu, CHEN Yaodeng, ZHANG Lina, et al. Analysis on influence of convection after moving into hangzhou bay on the development of squall line[J]. Meteorological Monthly, 2017, 46(1): 56-66. (in Chinese)
    [18] Gallus W A, Snook N A, Johnson E V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study[J]. Wea forecasting, 2008, 23(1): 101-113.
    [19] 张晰莹, 吴迎旭, 张礼宝. 利用卫星、 雷达资料分析龙卷发生的环境条件[J]. 气象, 2012, 39(6): 728-737.ZHANG Xiying, WU Yingxu, ZHANG Libao. The Analysis of the tornadoes environmental conditions based on the FY-2 satellite and doppler images[J]. Meteorological Monthly, 2012, 39(6): 728-737. (in Chinese)
    [20] 寿绍文, 励申申, 寿亦萱, 等. 中尺度气象学[M]. 北京: 气象出版社, 2016: 114-130.SHOU Shaowen, LI Shenshen, SHOU Yixuan, et al. Mesoscale Meteorology[M]. Beijing: China Meteorological Press, 2016: 114-130. (in Chinese)
    [21] 俞小鼎, 姚秀萍, 熊庭南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 北京气象出版社, 2006: 90-95, 114-130.YU Xiaoding, YAO Xiuping, XIONG Tingnan, et al. Doppler Weather Radar Principle and Business Application[M]. Beijing: China Meteorological Press, 2016: 90-95, 114-130. (in Chinese)
    [22] 丁一汇. 高等天气学[M]. 北京: 气象出版社, 2005: 315-399.DING Yihui. Higher Weather Science[M]. Beijing: China Meteorological Press, 2005: 315-399. (in Chinese)
    [23] 孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征[J]. 气象学报, 2015, 73(4): 609-623.SUN Jisong, Lei Lei, YU Bo, et al. Basic characteristics of extreme rainstorm events in Beijing in the past 10 years[J], Acta Meteorologica Sinica, 2015, 73(4): 609-623. (in Chinese)
    [24] 章国材, 矫梅燕, 李延香, 等. 现代天气预报技术和方法[M]. 北京: 气象出版社, 2007: 114-139.ZHANG Guocai, JIAO Meiyan, LI Yanxiang, et al. Modern Weather Forecasting Techniques and Methods[M]. Beijing: China Meteorological Press, 2007: 114-139. (in Chinese)
    [25] 伍志方, 蔡景就, 林良勋, 等. 2017年广州“5·7”暖区特大暴雨的中尺度系统和可预报性[J]. 气象, 2018, 44(4): 485-499.WU Zhifang, CAI Jingjiu, LIN Liangxun, et al. Analysis of mesoscale systems and predictability of the torrential rain process in guangzhou on 7May 2017[J]. Meteorological Monthly, 2018, 44(4): 485-499. (in Chinese)
    [26] 于庚康, 吴海英, 曾明剑, 等. 江苏地区两次强飑线天气过程的特征分析[J]. 大气科学学报, 2013, 36(1): 47-59.YU Gengkang, WU Haiying, ZENG Mingjian, et al. Analysis of the characteristics of the two strong lines in the jiangsu province[J]. Transactions of Atmospheric Sciences, 2013, 36(1): 47-59. (in Chinese)
    [27] 袁子鹛, 王瀛, 崔胜权, 等. —次中纬度飑线的阵风锋发展特征分析[J]. 气象, 2011, 37(7): 814-820.YUAN Zimei, WANG Ying, CUI Shengquan, et al. Analysis of the development characteristics of the gust front of the mid-latitude squall line[J]. Meteorological Monthly, 2011, 37(7): 814-820. (in Chinese)
    [28] 梁俊平, 张一平. 2013年8月河南三次西南气流型强对流天气分析[J]. 气象, 2015, 41(11): 1328-1340.LIANG Junping, ZHANG Yiping. Analysis of three strong southwest airflow convective weather in Henan in August 2013[J]. Meteorological Monthly, 2015, 41(11): 1328-1340. (in Chinese)
    [29] 孙继松, 陶祖钰. 强对流天气分析与预报中的若干基本问题[J]. 气象, 2012, 38(2): 164-173.SUN Jisong, TAO Zuyu. Some basic problems in the analysis and forecasting of severe convective weather[J]. Meteorological Monthly, 2012, 38(2): 164-173. (in Chinese)
    [30] 吴迎旭, 周一, 刘松涛, 等. 一次β中尺度系统引发的大风与强降水的物理机制与特征分析[J]. 气象与环境学报, 2016, 32(3): 1-9.WU Yingxu, ZHOU Yi, LIU Songtao, et al. The physical mechanism and characteristics of strong winds and heary rainfall in a β scale systems analysis issued[J]. Joumal of Meteorology and Environment, 2016, 32(3): 1-9.
    [31] 姚叶青, 俞小鼎, 郝莹, 等. 两次强龙卷过程的环境背景场和多普勒雷达资料的对比分析[J]. 热带气象学报, 2007, 23(5): 483-490.YAO Yeqing, YU Xiaoding, HAO Ying, et al. Comparative analysis of environmental background field and doppler radar data of two strong tornado processes[J]. Journal of Tropical Meteorology, 2007, 23(5): 483-490. (in Chinese)
    [32] 阎访, 陈静, 卞韬, 等. 一次雷暴大风的物理环境场和多普勒雷达回波特征[J]. 气象与环境学报, 2013, 29(1): 33-39.YAN Fang, CHEN Jing, BIAN Tao, et al. Analysis of physical parameter field and echo characteristics of doppler radar in a thunder-storm process[J]. Journal of Meteorology and Environment, 2013, 29(1): 33-39. (in Chinese)
    [33] 陈渭民. 卫星气象学[M]. 北京: 气象出版社, 2003: 338-362.CHEN Weimin. Satellite Meteorology[M]. Beijing: China Meteorological Press, 2003: 338-362. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700