海洋潮汐浪溅区混凝土表面氯离子浓度的改进计算模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improved model for surface chloride concentration of concrete in marine tidal and splash zones
  • 作者:蔡荣 ; 杨绿峰 ; 余波
  • 英文作者:Cai Rong;Yang Lufeng;Yu Bo;Department of Construction,Guangxi University of Finance and Economics;School of Civil Engineering and Architecture;Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education;Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,Guangxi University;
  • 关键词:潮汐浪溅区 ; 混凝土 ; 氯离子浓度 ; 回归分析 ; 胶凝材料
  • 英文关键词:tidal and splash zones;;concrete;;chloride concentration;;regression onalysis;;binder
  • 中文刊名:JIAN
  • 英文刊名:Journal of Civil and Environmental Engineering
  • 机构:广西财经学院建设处;广西大学土木建筑工程学院;工程防灾与结构安全教育部重点实验室;广西防灾减灾与工程安全重点实验室;
  • 出版日期:2019-06-14 15:58
  • 出版单位:土木与环境工程学报(中英文)
  • 年:2019
  • 期:v.41;No.214
  • 基金:国家自然科学基金(51678165、51668008);; 广西自然科学基金(2018GXNSFAA281344)~~
  • 语种:中文;
  • 页:JIAN201904015
  • 页数:8
  • CN:04
  • ISSN:50-1218/TU
  • 分类号:125-132
摘要
收集世界不同地区304组海洋潮汐浪溅区自然暴露混凝土的试验数据,据此分析水胶比、胶凝材料种类和暴露时间对混凝土表面氯离子浓度C_(s,ts)的影响规律,进而结合二阶段多元非线性回归分析,分别确定了硅酸盐水泥、粉煤灰、矿渣和硅灰等胶凝材料对C_(s,ts)的修正系数,建立了海洋潮汐浪溅区C_(s,ts)的改进模型,并利用现有模型和试验数据对比,验证了该模型的适用性。分析表明:C_(s,ts)与水胶比之间近似呈线性关系,且胶凝材料种类对C_(s,ts)的影响显著;C_(s,ts)在前5a内快速增长,随后逐渐趋于稳定,可以利用指数型函数来描述其时变规律。
        The influences of water-to-binder ratio,binder type and exposure time on the surface chloride concentration C_(s,ts) of concrete exposed to marine tidal and splash zones were investigated systematically in this study based on 304 sets of field test data selected from different sites around the world.Then,the correction factors of four binder types can be determined using the two-phase multiple nonlinear regression technique,including the ordinary Portland cement,fly ash,slag and silica fume.Finally,an improved model for C_(s,ts)was developed.The applicability of the improved model for C_(s,ts) was validated in comparison with existing models and field test data.Analysis results show that the surface chloride concentration increases linearly with water-binder-ratio,while the influence of binder type on C_(s,ts) cannot be ignored.Moreover,C_(s,ts) increases over exposure time exponentially,which appears a fast increase in the first 5 years and then becomes constant.
引文
[1]MARQUES P F,COSTA A,LANATA F.Service life of RC structures:chloride induced corrosion:prescriptive versus performance-based methodologies[J].Materials and Structures,2012,45(1):277-296.
    [2]DURACRETE.Final technical report-general guidelines for durability design and redesign[R].Denmark:The European Union,2000.
    [3]SONG H W,LEE C H,ANN K Y.Factors influencing chloride transport in concrete structures exposed to marine environments[J].Cement and Concrete Composites,2008,30(2):113-121.
    [4]SONG H W,SHIM H B,PETCHERDCHOO A,et al.Service life prediction of repaired concrete structures under chloride environment using finite difference method[J].Cement and Concrete Composites,2009,31(2):120-127.
    [5]COSTA A,APPLETON J.Chloride penetration into concrete in marine environment-Part II:Prediction of long term chloride penetration[J].Materials and Structures,1999,32(5):354-359.
    [6]LIN S H.Chloride diffusion in a porous concrete slab[J].Corrosion,1990,46(12):964-967.
    [7]ARORA P,POPOV B N,HARAN B,et al.Corrosion initiation time of steel reinforcement in a chloride environment:A one dimensional solution[J].Corrosion Science,1997,39(4):739-759.
    [8]KASSIR M K,GHOSN M.Chloride-induced corrosion of reinforced concrete bridge decks[J].Cement and Concrete Research,2002,32(1):139-143.
    [9]LI Q W,LI K F,ZHOU X G,et al.Model-based durability design of concrete structures in Hong KongZhuhai-Macau sea link project[J].Structural Safety,2015,53:1-12.
    [10]CHALEE W,JATURAPITAKKUL C,CHINDAPRASIRTP.Predicting the chloride penetration of fly ash concrete in seawater[J].Marine Structures,2009,22(3):341-353.
    [11]PETCHERDCHOO A.Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete[J].Construction and Building Materials,2013,38:497-507.
    [12]蔡荣,杨绿峰,余波,等.海洋潮汐浪溅区混凝土表面氯离子浓度计算模型[J].海洋工程,2014,32(5):25-33.CAI R,YANG L F,YU B,et al.Computing model for surface chloride concentration of concrete in marine tidal and splash zones[J].The Ocean Engineering,2014,32(5):25-33.(in Chinese)
    [13]COSTA A,APPLETON J.Chloride penetration into concrete in marine environment:Part I:Main parameters affecting chloride penetration[J].Materials and Structures,1999,32(4):252-259.
    [14]NANUKUTTAN S V,BASHEER L,MCCARTER WJ,et al.Full-scale marine exposure tests on treated and untreated concretes-initial 7-year results[J].ACIMaterials Journal,2008,105(1):81-87.
    [15]PACK S W,JUNG M S,SONG H W,et al.Prediction of time dependent chloride transport in concrete structures exposed to a marine environment[J].Cement and Concrete Research,2010,40(2):302-312.
    [16]MARKESET G,SKJ-LSVOLD O.International symposium on service life design for infrastructure time dependent chloride diffusion coefficient-field studies of concrete exposed to marine environment in norway[R].Norway:SINTEF Building and Infrastructure,2010.
    [17]PANG L,LI Q W.Service life prediction of RCstructures in marine environment using long term chloride ingress data:Comparison between exposure trials and real structure surveys[J].Construction and Building Materials,2016,113:979-987.
    [18]薛焕,金祖权,王晓杰.混凝土在海洋暴露过程中的氯离子渗透研究[J].海洋工程,2015,33(5):60-65.XUE H,JIN Z Q,WANG X J.Chloride ion penetration into concrete exposed to marine environment for a long period[J].The Ocean Engineering,2015,33(5):60-65.(in Chinese)
    [19]SAFEHIAN M,RAMEZANIANPOUR A A.Prediction of RC structure service life from field long term chloride diffusion[J].Computers and Concrete,2015,15(4):589-606.
    [20]FARAHANI A,TAGHADDOS H,SHEKARCHI M.Prediction of long-term chloride diffusion in silica fume concrete in a marine environment[J].Cement and Concrete Composites,2015,59:10-17.
    [21]杨绿峰,蔡荣,余波.海洋大气区混凝土表面氯离子浓度的形成机理和多因素模型[J].土木工程学报,2017,50(12):46-55.YANG L F,CAI R,YU B.Formation mechanism and multi-factor model for surface chloride concentration of concrete in marine atmosphere zone[J].China Civil Engineering Journal,2017,50(12):46-55(in Chinese).
    [22]韩建国,李克非.混凝土抗氯离子渗透能力测试方法的适用性[J].建筑材料学报,2015,18(4):704-709,715.HAN J G,LI K F.Adaptability of the evaluation methods of concrete anti-chloride penetration ability[J].Journal of Building Materials,2015,18(4):704-709,715.(in Chinese)
    [23]王胜年,苏权科,范志宏,等.港珠澳大桥混凝土结构耐久性设计原则与方法[J].土木工程学报,2014,47(6):1-8.WANG S N,SU Q K,FAN Z H,et al.Durability design principle and method for concrete structures in Hong Kong-Zhuai-Macau sea link project[J].China Civil Engineering Journal,2014,47(6):1-8.(in Chinese)
    [24]王胜年,李克非,范志宏,等.港珠澳大桥主体混凝土结构120a使用寿命耐久性对策[J].水运工程,2015(3):78-84,92.WANG S N,LI K F,FAN Z H,et al.Durability strategy for main concrete structure of Hong KongZhuhai-Macao bridge with designed service life of 120years[J].Port&Waterway Engineering,2015(3):78-84,92.(in Chinese)
    [25]赵羽习,王传坤,金伟良,等.混凝土表面氯离子浓度时变规律试验研究[J].土木建筑与环境工程,2010,32(3):8-13.ZHAO Y X,WANG C K,JIN W L,et al.Experimental analysis on time dependent law of surface chloride ion concentration of concrete[J].Journal of Civil,Architectural&Environmental Engineering,2010,32(3):8-13(in Chinese).
    [26]MAES M,GRUYAERT E,DE BELIE N.Resistance of concrete with blast-furnace slag against chlorides,investigated by comparing chloride profiles after migration and diffusion[J].Materials and Structures,2013,46(3):89-103.
    [27]陈昌礼,屠庆模,凌友志.硅粉混凝土的基本性能与工程应用[J].新型建筑材料,2008,35(4):43-47.CHEN C L,TU Q M,LING Y Z.The basic properties and engineering applications of silica fume concrete[J].New Building Materials,2008,35(4):43-47.(in Chinese)
    [28]VALIPOUR M,PARGAR F,SHEKARCHI M,et al.In situ study of chloride ingress in concretes containing natural zeolite,metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment[J].Construction and Building Materials,2013,46(1):63-70.
    [29]赵尚传,贡金鑫,水金锋.氯离子环境下既有钢筋混凝土桥梁耐久性的概率分析[J].公路交通科技,2006,23(7):82-86,91.ZHAO S C,GONG J X,SHUI J F.Probability analysis of durability for existing reinforced concrete bridge in chloride environment[J].Journal of Highway and Transportation Research and Development,2006,23(7):82-86,91.(in Chinese)
    [30]韩兆洲.高斯·牛顿法在非线性回归分析中的应用[J].财贸研究,1992,1992(3):72-75.HAN Z Z.Application of Gauss-Newton method in nonlinear regression analysis[J].Finance and Trade Research,1992,3(3):72-75.(in Chinese).
    [31]LNEC E465 L.Methodology for estimating the concrete performance properties allowing to comply with the design working life of the reinforced or prestressed concrete structures under environmental exposures XC and XS(in Portuguese)[M].Lisbon:National Laboratory for Civil Engineering,2007:67.
    [32]中华人民共和国交通运输部.水运工程结构耐久性设计标准:JTS 153―2015[S].北京:人民交通出版社,2015.China's Ministry of Transport.Standard for durability of port and waterway engineering structure:JTS 153-2015[S].Beijing:China Communications Press,2015.
    [33]王晓舟,金伟良.海港码头混凝土结构干湿交替区域氯离子侵蚀规律研究[J].海洋工程,2010,28(4):97-104,110.WANG X Z,JIN W L.Chloride penetration in wet-dry cycling zone of harbor concrete structure[J].The Ocean Engineering,2010,28(4):97-104,110.(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700