海砂颗粒级配对UHPC性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Sea Sand Particle Size on the Properies of Ultra High Performance Concrete
  • 作者:王越洋 ; 欧忠文 ; 赵雅璐 ; 王飞 ; 王经纬
  • 英文作者:WANG Yueyang;OU Zhongwen;ZHAO Yalu;WANG Fei;WANG Jingwei;Army Logistics University of PLA;Northwest Institute of Nuclear Technology;
  • 关键词:海砂 ; 级配 ; 流动度 ; 强度 ; 模型
  • 英文关键词:sea sand;;graduation;;fluidity;;strength;;model
  • 中文刊名:CLKY
  • 英文刊名:Development and Application of Materials
  • 机构:陆军勤务学院军事设施系;西北核技术研究所;
  • 出版日期:2018-12-06 13:56
  • 出版单位:材料开发与应用
  • 年:2019
  • 期:v.34
  • 基金:全军重点课题(BY114R007);; 军队后勤科研计划重点项目(BLJ17J008);; 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0263);; 重庆市研究生科研创新项目(CYB17149)
  • 语种:中文;
  • 页:CLKY201902018
  • 页数:7
  • CN:02
  • ISSN:41-1149/TB
  • 分类号:102-108
摘要
针对海砂颗粒级配的优化,运用混料设计的方法,将A、B、C、D四个粒径段海砂分别作为四个变量进行了设计分析。建立了具有良好统计学意义的流动度模型、抗压强度模型及抗折强度模型,并利用响应面法系统分析了各粒径段海砂对超高性能混凝土(UHPC)的流动度、抗压强度及抗折强度作用规律。通过对所建模型进行多目标同步优化,得出了海砂各粒径段掺量的优化方案,制备出了流动度良好、28 d抗压强度超过130 MPa、抗折强度超过29 MPa的UHPC。
        Aiming at the optimization of sea sand particle grading, four kinds of sea sand, A, B, C and D with different particle sizes, were used as four variables. The fluidity model, compressive strength model and flexural strength model with statistical significance were established.The response surface methodology was used to analyze the effects of sea sand on the fluidity, compressive strength and flexural strength of ultra-high performance concrete(UHPC). Through the multi-objective optimization of the models, the optimization plan for the amount of sea sand of each particle size segment was obtained.The UHPC with good fluidity, 28 d compressive strength over 130 MPa and flexural strength exceeding 29 MPa was prepared.
引文
[1] VOO Y L,FOSTER S J.Characteristics of ultra-high performance “ductile” concrete and its impact on sustainable construction[J].Ies Journal Part A Civil & Structural Engineering,2010,3(3):168—187.
    [2] SHI C,WU Z,XIAO J,et al.A review on ultra high performance concrete:Part I.Raw materials and mixture design[J].Construction and Building Materials,2015,101:741—751.
    [3] 梁兴文,胡翱翔,于婧,等.钢纤维对超高性能混凝土抗弯力学性能的影响[J].复合材料学报,2018(03):722—731.
    [4] RICHARD P,CHEYREZY M.Composition of reactive powder concretes[J].Cement & Concrete Research,1995,25(7):1501—1511.
    [5] 刘伟,谢友均,董必钦,等.海砂特性及海砂混凝土力学性能的研究[J].硅酸盐通报,2014,33(1):15—22.
    [6] 漆贵海,王玉麟,李硕,等.海砂混凝土国内研究综述[J].混凝土,2013(5):57—61.
    [7] DEHWAH H A F.Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates[J].Construction & Building Materials,2007,21(1):29—39.
    [8] 中国国家标准化管理委员会.水泥胶砂流动度测定方法:GB/T 2419—2005[S].北京:中国标准出版社,2005.
    [9] 中国国家标准化管理委员会.水泥胶砂强度试验:GB/T 17671—1999[S].北京:中国标准出版社,1999.
    [10] GHAFARI E,COSTA H,JULIO E.Statistical mixture design approach for eco-efficient UHPC[J].Cement and Concrete Composites,2015,55:17—25.
    [11] 尹健,张贤超,宋卫民,等.基于混料设计理论的透水混凝土骨料特征响应分析[J].建筑材料学报,2013(05):846—852.
    [12] RAY I,DAVALOS J F,SUN Z.Design of Experiment and statistical analysis of bond strength test of bi-layer concrete[J].Internationat Journal of Materials & Product Technology,2010,39(314):302.
    [13] GüNEYISI E,GESO L U M,ALG N Z,et al.Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method[J].Composites Part B Engineering,2014,60(2):707—715.
    [14] 严琳.自密实混凝土的配制及其性能研究[D].重庆:重庆大学,2008.
    [15] FATEMI S,VARKANI M K,RANJBAR Z,et al.Optimization of the water-based road-marking paint by experimental design,mixture method[J].Progress in Organic Coatings,2006,55(4):337—344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700