Z箍缩动态黑腔形成过程MULTI程序一维数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI
  • 作者:吴福源 ; 褚衍运 ; 叶繁 ; 李正宏 ; 杨建伦 ; Rafael ; Ramis ; 王真 ; 祁建敏 ; 周林 ; 梁川
  • 英文作者:Wu Fu-Yuan;Chu Yan-Yun;Ye Fan;Li Zheng-Hong;Yang Jian-Lun;Rafael Ramis;Wang Zhen;Qi Jian-Min;Zhou Lin;Liang Chuan;Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics;E.T.S.I. Aeronautica y del Espacio,Universidad Politecnica de Madrid;
  • 关键词:Z箍缩 ; 动态黑腔 ; 辐射磁流体力学 ; 冲击波
  • 英文关键词:Z-pinch;;dynamic hohlraum;;radiation magneto-hydrodynamics;;shock
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院核物理与化学研究所;西班牙马德里理工大学航空航天学院;
  • 出版日期:2017-09-30 10:25
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家自然科学基金(批准号:11135007,11305155);; 西班牙经济与竞争力部(批准号:ENE2014-54960-R);; 欧盟聚变联盟(批准号:AWP15-ENR-01/CEA-02)资助的课题~~
  • 语种:中文;
  • 页:WLXB201721026
  • 页数:8
  • CN:21
  • ISSN:11-1958/O4
  • 分类号:336-343
摘要
Z箍缩动态黑腔能够高效地将Z箍缩丝阵等离子体动能转换为黑腔辐射能,为驱动惯性约束靶丸聚变提供高品质的X射线辐射场.利用一维双温多群辐射磁流体力学程序MULTI-IFE,研究了"聚龙一号"装置驱动电流条件下的Z箍缩动态黑腔形成基本物理过程.数值模拟结果表明,在动态黑腔形成过程中,辐射热波的传播速度比冲击波的传播速度更快,比冲击波更早到达泡沫中心,使中心区域的泡沫在冲击波到达前就已具有较高的辐射温度.对于"聚龙一号"装置动态黑腔实验0180发次采用的负载参数,辐射热波和冲击波在泡沫中的传播速度分别约为36.1 cm/μs和17.6 cm/μs,黑腔辐射温度在黑腔形成初期约80 eV,在冲击波到达泡沫中心前可达100 eV以上,丝阵等离子体外表面发射的X射线能量集中在1000 eV以下.本文给出了程序采用的计算模型、美国"土星"装置丝阵内爆计算结果和"聚龙一号"装置动态黑腔实验0180发次模拟结果.
        Z-pinch dynamic hohlraum can effectively convert Z-pinch plasma kinetic energy into radiation field energy, which has a potential to implode a pellet filled with deuterium-tritium fuel to fusion conditions when the drive current is sufficiently large. To understand the formation process of Z-pinch dynamic hohlraum on JULONG-I facility with a typical drive current of 8-10 MA, a new radiation magneto-hydrodynamics code is developed based on the program MULTIIFE. MULTI-IFE is a one-dimensional, two-temperature, multi-group, open-source radiation hydrodynamic code, which is initially designed for laser and heavy ion driven fusion. The original program is upgraded to simulate Z-pinch related experiments by introducing Lorentz force, Joule heating and the evolution of magnetic field into the code. Numerical results suggest that a shock wave and a thermal wave will be launched when the high speed plasma impacts onto the foam converter. The thermal wave propagates much faster than shock wave, making the foam become hot prior to the arrival of shock wave. For the load parameters and drive current of shot 0180, the calculated propagation speed of thermal wave and shock wave are about 36.1 cm/μs and 17.6 cm/μs, respectively. The shock wave will be reflected when it arrives at the foam center and the speed of reflected shock wave is about 12.9 cm/μs. Calculations also indicate that the plastic foam will expand obviously due to the high temperature radiation environment(~30 eV) around it before the collision between tungsten plasma and foam converter. The evolution of radial radiation temperature profile shows that a pair of bright strips pointing to the foam center can be observed by an on-axis streak camera and the radiation temperature in the foam center achieves its highest value when the shock arrives at the axis. A bright emission ring moving towards the foam center can also be observed by an on-axis X-ray frame camera. The best time to capture the bright strips and bright emission rings is before the thermal wave reaches the foam center. Even though some amount of X-ray radiation in the foam is expected to escape from the hohlraum via radiation transport process, simulation results suggest that the tungsten plasma can serve as a good hohlraum wall. The radiation temperature is about 80 eV when the dynamic hohlraum is created and can rise more than 100 eV before the shock arrives at the foam center. Most of the X-rays emitted by the wire-array plasma surface have energies below 1000 eV. In this paper, the physical model of the code MULTI-IFE and the simulation results of array implosions on Saturn facility are presented as well.
引文
[1]Peng X J,Hua X S 2008 Eng.Sci.10 47(in Chinese)[彭先觉,华欣生2008中国工程科学10 47]
    [2]Li Z H,Huang H W,Wang Z,Chen X J,Qi J M,Guo H B,Ma J M,Xiao C J,Chu Y Y,Zhou L 2014 High Power Laser and Particle Beams 26 26100202(in Chinese)[李正宏,黄洪文,王真,陈晓军,祁建敏,郭海兵,马纪敏,肖成建,褚衍运,周林2014强激光与粒子束26 26100202]
    [3]Sanford W L,Olson R E,Mock R C,Chandler G A,Leeper R J,Nash T J,Ruggles L E,Simpson W W,Struve K W,Peterson D L,Bowers R L,Matuska W2000 Phys.Plasmas 7 4669
    [4]Bennett G R,Cuneo M E,Vesey R A,Porter J L,Adams R G,Aragon R A,Caird J A,Landen O L,Rambo P K,Rovang D C,Ruggles L,Simpson W W,Smith I C,Wenger D F 2002 Phys.Rev.Lett.89 245002
    [5]Sanford T W,Lemke R W,Mock R C,Chandler G A,Leeper R J,Ruiz C L,Peterson D L,Chrien R E,Idzorek G C,Watt R G,Chittenden J P 2002 Phys.Plasmas 93573
    [6]Smirnov V P 1991 Plasma Phys.Control.Fusion 331697
    [7]Brownell J H,Bowners R L,Mclenithan K D,Peterson D L 1998 Phys.Plasmas 5 2071
    [8]Nash T J,Derzon M S,Allshouse G O,Deeney C,Seaman J F,Mcgurn J S,Jobe D,Gilliland T L,Macfarlane J J,Wang P,Petersen D 1997 AIP Conf.Proc.409 175
    [9]Bailey J E,Chandler G A,Slutz S A,Bennett G R,Cooper G W,Lash J S,Lazier S E,Lemke R W,Nash T J,Nielsen D S,Moore T C,Ruiz C L,Schroen D G,Smelser R M,Torres J A,Vesey R A 2002 Phys.Rev.Lett.89 095004
    [10]Rochau G A,Bailey J E,Chandler G A,Cooper G,Dunham G,Lake P,Leeper R J,Lemke R W,Mehlhorn T A,Nikroo A,Peterson K J,Ruiz C L,Schroen D G,Slutz S A,Steinman D A,Stygar W A,Varnum W 2007 Plasma Phys.Control.Fusion 49 B591
    [11]Xu R K,Li Z H,Yang J L,Ding N,Zhou X W,Jiang S L,Zhang F Q,Wang Z,Xu Z P,Ning J M,Li L B,Grabovsky E V,Oleynic G M,Alexandrov V V,Smirnov V 2011 Acta Phys.Sin.60 045208(in Chinese)[徐荣昆,李正宏,杨建伦,丁宁,周秀文,蒋世伦,章法强,王真,许泽平,宁家敏,李林波,Grabovsky E V,Oleynic G M,Alexandrov V V,Smirnov V 2011物理学报60 045208]
    [12]Ding N,Wu J M,Dai Z H,Zhang Y,Yin L,Yao Y Z,Sun S K,Ning C,Shu X J 2010 Acta Phys.Sin.59 8707(in Chinese)[丁宁,邬吉明,戴自换,张扬,尹丽,姚彦忠,孙顺凯,宁成,束小建2010物理学报59 8707]
    [13]Ning C,Feng Z X,Xue C 2014 Acta Phys.Sin.63125208(in Chinese)[宁成,丰志兴,薛创2014物理学报63 125208]
    [14]Xiao D L,Sun S K,Xue C,Zhang Y,Ding N 2015 Acta Phys.Sin.64 235203(in Chinese)[肖德龙,孙顺凯,薛创,张扬,丁宁2015物理学报64 235203]
    [15]Meng S J,Huang Z C,Ning J M,Hu Q Y,Ye F,Qin Y,Xu Z P,Xu R K 2016 Acta Phys.Sin.65 075201(in Chinese)[蒙世坚,黄展常,甯家敏,胡青元,叶繁,秦义,许泽平,徐荣昆2016物理学报65 075201]
    [16]Ramis R,Schmalz R,Meyer-ter-Vehn J 1988 Comput.Phys.Commun.49 475
    [17]Ramis R,Meyer-ter-Vehn J 2016 Comput.Phys.Commun.203 226
    [18]Ramis R 2017 J.Comput.Phys.330 173
    [19]Oliphant T A 1981 RAVEN Physical Manual Los Alamos Scientific Laboratory Report LA-8802-M
    [20]Wang G H 2002 Ph.D.Dissertation(Beijing:Graduate School of Chinese Academy of Engineering Physics)(in Chinese)[王刚华2002博士学位论文(北京:中国工程物理研究院北京研究生部)]
    [21]Yan Q J 2006 Numerical Analysis(Beijing:Beihang University Press)p27(in Chinese)[颜庆津2006数值分析(北京:北京航空航天大学出版社)第27页]
    [22]Deeney C,Nash T J,Spielman R B,Seaman J F,Chandler G,Struve K W,Porter J L,Stygar W A,Mcgurn J S,Jobe D,Gilliland T L,Torres J A,Vargas M F,Ruggles L E,Breeze S P,Mock R C,Douglas M R,Fehl D L,Mcdaniel D H,Matzen M K,Peterson D L,Matuska W,Roderick N F,Macfarlane J J 1997 Phys.Rev.,E 565945
    [23]Ding N,Wu J M,Yang Z H,Fu S W,Ning C,Liu Q,Shu X J,Zhang Y,Dai Z H 2008 High Power Laser and Particle Beams 20 212(in Chinese)[丁宁,邬吉明,杨震华,符尚武,宁成,刘全,束小建,张扬,戴自换2008强激光与粒子束20 212]
    [24]Thornhill J W,Whitney K G,Deeney C,Lepell P D1994 Phys.Plasmas 1 321
    [25]Ning C,Sun S K,Xiao D L,Zhang Y,Ding N,Huang J,Xue C,Shu X J 2010 Phys.Plasmas 17 062703
    [26]Peterson D L,Bowers R L,McLenithan K D,Deeney C,Chandler G A,Spielman R B,Matzen M K,Roderick N F 1998 Phys.Plasmas 5 3302
    [27]Sanford T W,Allshouse G O,Marder B M,Nash T J,Mock R C,Spielman R B,Seamen J F,Mcgurn J S,Jobe D,Gilliland T L,Vargas M,Struve K W,Stygar W A,Douglas M R,Matzen M K,Hammer J H,Groot J S,Eddleman J L,Peterson D L,Mosher D,Whitney K G,Thornhill J W,Pulsifer P E,Apruzese J P,Maron Y 1996 Phys.Rev.Lett.77 5063
    [28]Xiao D L,Ding N,Sun S K,Ye F,Ning J M,Hu Q Y,Chen F X,Qin Y,Xu R K,Li Z H 2014 Phys.Plasmas21 042704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700