涡轮叶片结构化网格自动分区策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Automated Blocking Strategy for Turbine Blades
  • 作者:岳孟赫 ; 刘勇 ; 赵璐 ; 张祥
  • 英文作者:YUE Meng-he;LIU Yong;ZHAO Lu;ZHANG Xiang;College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:涡轮冷却叶片 ; 自动分区 ; 结构化网格生成 ; 计算流体力学
  • 英文关键词:cooling turbine blade;;automatic division;;structured mesh generation;;computational fluid dynamics(CFD)
  • 中文刊名:HKJJ
  • 英文刊名:Aeronautical Computing Technique
  • 机构:南京航空航天大学能源与动力学院;
  • 出版日期:2017-09-25
  • 出版单位:航空计算技术
  • 年:2017
  • 期:v.47;No.200
  • 语种:中文;
  • 页:HKJJ201705017
  • 页数:5
  • CN:05
  • ISSN:61-1276/TP
  • 分类号:72-76
摘要
为提高结构化网格生成效率,研究了基于涡轮叶片网格划分的自动分区策略。为方便进行结构化网格划分,根据涡轮叶片几何参数,计算各结构包络面,自动在计算域中生成辅助面,以构建六面体拓扑结构。为提高网格质量,提出了具有通用性的"填充虚拟结构"优化方法,将计算域的分区细化。结果表明策略人工干预少,网格生成周期短,适用于具有相似拓扑结构的叶片模型,解决了多分区结构化网格生成中分区量大的难题,有助于实现叶片结构设计过程的自动优化。
        In order to achieve higher levels of efficiency of structured mesh generation,an approach towards automatic blocking applied into turbine blade is presented,based on the parameters of parameterized model,the envelope planes can be calculated respectively,the hexahedral topology is constructed by generating the auxiliary planes in the computational domain,which can be used for the structured mesh generation.This paper presents a concept for computational grid optimization performed by decomposing complex domain into simpler parts by filling virtual structures.The results show that this strategy contributes to less manual intervention and shorter mesh generation period,and it can be used for turbine blades that have the same structures,which is very helpful for the automatic optimization of blade design.
引文
[1]Dyedov V,Einstein D R,Jiao X,et al.Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing[J].International Journal for Numerical Methods in Engineering,2009,79(8):907.
    [2]Sharov D,Luo H,Baum J D,et al.Unstructured Navier-Stokes grid generation at corners and ridges[J].International Journal for Numerical Methods in Fluids,2013,43(6-7):717-728.
    [3]修荣荣,徐明海,黄善波,等.网格单元形状对数值计算的影响[J].工程热物理学报,2004,25(2):317-319.
    [4]虞跨海,李立州,岳珠峰.基于解析及特征造型的涡轮冷却叶片参数化设计[J].推进技术,2007,28(6):637-640.
    [5]姚彦忠,王瑞利,袁光伟.复杂区域上的一种结构网格生成方法[J].计算物理,2007,24(6):647-654.
    [6]迟重然.气冷涡轮叶片的传热设计[D].哈尔滨:哈尔滨工业大学,2011.
    [7]罗磊,陈朔,温风波,等.燃气涡轮无气膜冷却动叶参数化设计系统应用[J].推进技术,2015,36(6):864-875.
    [8]Heidmann J D,Rigby D L.Top Maker:A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis[C].American Society of Mechanical Engineers,USA:ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference,2004.
    [9]Kol 2ek T,Subelj M,Duhovnik J.Generation of block-structured grids in complex computational domains using templates[J].Finite Elements in Analysis&Design,2003,39(12):1139-1154.
    [10]徐伟祖.叶轮机CFD网格预处理研究[D].南京:南京航空航天大学,2008.
    [11]夏禹.涡轮叶片造型CAD系统研究[D].西安:西北工业大学,2004.
    [12]倪萌,朱惠人,裘云,等.航空发动机涡轮叶片冷却技术综述[J].燃气轮机技术,2005,18(4):25-33.
    [13]龚勋.涡轮冷却叶片结构网格参数化方法研究[D].南京:南京航空航天大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700