海洋中石油烃类降解与微生物腐蚀关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between Hydrocarbon Degradation and Biocorrosionin Marine Environment
  • 作者:张一梦 ; 郑泽旭 ; 段继周
  • 英文作者:ZHANG Yi-meng;ZHENG Ze-xu;DUAN Ji-zhou;Institute of Oceanology,Chinese Academy of Sciences;Pilot National Laboratory for Marine Science and Technology (Qingdao);University of Chinese Academy of Sciences;Center for Ocean Mega-Science,Chinese Academy of Sciences;Sinopec Chongqing Fuling Shale Gas Exploration and Development Co.Ltd;
  • 关键词:海洋 ; 石油 ; 碳氢化合物 ; 微生物腐蚀 ; 生物降解 ; 金属 ; 油水混合
  • 英文关键词:marine;;crude oil;;hydrocarbon;;MIC;;biodegradation;;metal;;water-oil mixture
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院海洋研究所;青岛海洋科学与技术试点国家实验室;中国科学院大学;中国科学院海洋大科学研究中心;中石化重庆涪陵页岩气勘探开发有限公司;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金面上项目(41576080);; 山东省重点研发计划(2018GHY115003)~~
  • 语种:中文;
  • 页:BMJS201907025
  • 页数:9
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:225-233
摘要
在工程实践中,国家重要的海洋工程设施(如海底输油管线和船舶燃料系统等)发生的腐蚀破坏案例常常涉及到油水环境,并与微生物腐蚀作用密切相关,而了解海洋含油环境中石油烃类的生物转换机制是了解微生物腐蚀的关键。阐述了海洋环境中降解石油烃类的主要微生物及其降解机制,其在有氧和无氧条件下呈现不同的特点。微生物降解石油烃类过程中非常重要的一步即为接受电子,该过程将生物无法直接利用的化学能转换成可直接利用的能量形式,即腺苷三磷酸(ATP)。有氧条件下的烃类降解以氧气作为最终电子受体,而在缺氧条件下可利用硝酸盐、铁离子、硫酸盐等作为电子受体。海洋环境中的石油烃类会促进腐蚀性硫化物的生成,因此油水环境下的微生物腐蚀机理以硫化物的腐蚀破坏为主。此外,烃类降解过程产生的琥珀酸等酸性中间代谢物也会加剧腐蚀的发生。但目前关于海洋油水环境中微生物群落作为一个整体展现出的功能性及其对钢铁设施的破坏机理,仍然缺乏系统性的研究,而基于高通量测序的微生物组学研究技术将成为有效解决这些问题的手段之一。
        In engineering practice, the corrosion of some national significant marine infrastructures such as the pipelines of offshore oil-gas exploration and the fueling systems of ships usually occur under the oil-containing conditions and is closely related to serious microbiologically influenced corrosion(MIC). The knowledge about the biodegradation mechanisms of hydrocarbon in marine environment is the essential to understand the MIC mechanisms. The work reviewed the microbial degradation mechanisms and corresponding microbes in oil-containing marine environment, as well as different features under aerobic and anaerobic conditions. The electron-accepting process was a key step in microbial degradation. The energy stored in the hydrocarbon was transferred into adenosine triphosphate(ATP) that was easier to be utilized by microbes in the form of chemical bond. Oxygen acted as electron acceptors under aerobic conditions while nitrate, ferric ion, sulfate and carbon dioxide accepted electrons under anoxic conditions. The degradation of hydrocarbon stimulated the formation of sulfide, so MIC was dominant in oil-containing environment. In addition, the intermediate metabolites during degradation of hydrocarbonsuch as the fatty acids also caused MIC. However, the systematical studies on the functions of microbial communities as a whole and the corrosion mechanisms of steel infrastructuresin marine environment are still scarce. The microbial molecular techniques based on high-throughput sequencing are expected to become one of effective methods to solve these problems.
引文
[1]JACOBSON G A.Corrosion at prudhoe bay-A lesson on the line[J].Mater perform,2007,46(8):26-34.
    [2]HOU B R,LI X,MA X,et al.The cost of corrosion in China[J].Materials degradation 2017,1(1):4.
    [3]COLEMAN J,BAKER J,COOPER C,et al.Oil in the sea:Inputs,fates,and effects,2002.national research council.national academy press,washington,DC[J].Spill science&technology bulletin,2002,7(5-6):197-199.
    [4]United States National Research Council.Committee on sea turtle conservation decline of the sen turtles:causes and prevention[M].Washington DC:National Academy Press,1990.
    [5]MARSHALL A G,RODGERS R P.Petroleomics:The next grand challenge for chemical analysis[J].Accounts of chemical research,2004,37(1):53-9.
    [6]HEAD I M,JONES D M,LARTER S R.Biological activity in the deep subsurface and the origin of heavy oil[J].Nature,2003,426(6964):344-352.
    [7]HEAD I M,JONES D M,ROLING W F M.Marine microorganisms make a meal of oil[J].Nature reviews microbiology,2006,4(3):173-182.
    [8]PRINCE R C.Bioremediation of marine oil spills[J].Introduction to petroleum biotechnology,2010,15(5):2617-2630.
    [9]YAKIMOV M M,GOLYSHIN P N,LANG S,et al.Alcanivorax borkumensis gen.nov.,sp.nov.,a new,hydrocarbon-degrading and surfactant-producing marine bacterium[J].International journal of systematic bacteriology,1998,48:339-348.
    [10]DYKSTERHOUSE S E,GRAY J P,HERWIG R P,et al.Cycloclasticus pugetii gen-nov,sp-nov,an aromatic hydrocarbon-degrading bacterium from Marine-Sediments[J]International journal of systematic bacteriology,1995,45(1):116-23.
    [11]GOLYSHIN P N,CHERNIKOVA T N,ABRAHAM W R,et al.Oleiphilaceae fam.nov.,to include Oleiphilus messinensis gen.nov.,sp nov.,a novel marine bacterium that obligately utilizes hydrocarbons[J].International journal of systematic and evolutionary microbiology,2002,52:901-911.
    [12]YAKIMOV M M,GIULIANO L,GENTILE G,et al.Oleispira antarctica gen.nov.,sp nov.,a novel hydrocarbono clastic marine bacterium isolated from Antarctic coastal sea water[J].International journal of systematic and evolutionary microbiology,2003,53:779-785.
    [13]YAKIMOV M M,GIULIANO L,DENARO R,et al.Thalassolituus oleivorans gen.nov.,sp nov.,a novel marine bacterium that obligately utilizes hydrocarbons[J].International journal of systematic and evolutionary microbiology,2004,54:141-148.
    [14]ENGELHARDT M A,DALY K,SWANNELL R P J,et al.Isolation and characterization of a novel hydrocarbon-degrading,Gram-positive bacterium,isolated from intertidal beach sediment,and description of Planococcus alkanoclasticus sp.nov.[J].Journal of applied microbiology,2001,90(2):237-247.
    [15]RUETER P,RABUS R,WILKEST H,et al.Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J].Nature,1994,372(6505):455-458.
    [16]WIDDEL F,RABUS R.Anaerobic biodegradation of saturated and aromatic hydrocarbons[J].Curr opin biotechnol,2001,12(3):259-276.
    [17]ZENGLER K,HEIDER J,ROSSELLO-MORA R,et al.Phototrophic utilization of toluene under anoxic conditions by a new strain of blastochloris sulfoviridis[J].Arch microbiol,1999,172(4):204-212.
    [18]EVANS P J,MANG D T,KIM K S,et al.Anaerobic degradation of toluene by a denitrifying bacterium[J].Appl environ microbiol,1991,57(4):1139-1145.
    [19]ANDERS H J,KAETZKE A,KAMPFER P,et al.Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K-172 and KB-740 and their description as new members of the genera thauera,as thauera-aromatica sp-nov,and azoarcus,as azoarcus-evansii sp-nov,respectively,members of the beta-subclass of the proteobacteria[J].Int j syst bacteriol,1995,45(2):327-333.
    [20]FRIES M R,ZHOU J H,CHEESANFORD J,et al.Isolation,characterization,and distribution of denitrifying toluene degraders from a variety of habitats[J].Appl environ microbiol,1994,60(8):2802-2810.
    [21]SPORMANN A M,WIDDEL F.Metabolism of alkylbenzenes,alkanes,and other hydrocarbons in anaerobic bacteria[J].Biodegradation,2000,11(2-3):85-105.
    [22]SONG B,HAGGBLOM M M,ZHOU J Z,et al.Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp.nov.and Azoarcus toluclasticus sp.nov.[J].Int j syst bacteriol,1999,49:1129-1140.
    [23]DOLFING J,ZEYER J,BINDEREICHER P,et al.Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular-oxygen[J].Arch microbiol,1990,154(4):336-341.
    [24]RABUS R,WIDDEL F.Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria[J].Arch microbiol,1995,163(2):96-103.
    [25]HESS A,ZARDA B,HAHN D,et al.In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column[J].Appl environ microbiol,1997,63(6):2136-2141.
    [26]BALL H A,JOHNSON H A,REINHARD M,et al.Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium,strain EB1[J].J Bacteriol,1996,178(19):5755-5761.
    [27]HARMS G,RABUS R,WIDDEL F.Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria[J].Arch microbiol,1999,172(5):303-312.
    [28]EHRENREICH P,BEHRENDS A,HARDER J,et al.Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria[J].Arch microbiol,2000,173(1):58-64.
    [29]ROCKNE K J,CHEE-SANFORD J C,SANFORD R A,et al.Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions[J].Appl environ microbiol,2000,66(4):1595-1601.
    [30]GALUSHKO A,MINZ D,SCHINK B,et al.Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium[J].Environ microbiol,1999,1(5):415-420.
    [31]PHELPS C D,KERKHOF L J,YOUNG L Y.Molecular characterization of a sulfate-reducing consortium which mineralizes benzene[J].FEMS microbiol ecol,1998,27(3):269-279.
    [32]HARMS G,ZENGLER K,RABUS R,et al.Anaerobic oxidation of o-xylene,m-xylene,and homologous alkylbenzenes by new types of sulfate-reducing bacteria[J].Appl environ microbiol,1999,65(3):999-1004.
    [33]RABUS R,NORDHAUS R,LUDWIG W,et al.Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium[J].Appl environ microbiol,1993,59(5):1444-1451.
    [34]AECKERSBERG F,BAK F,WIDDEL F.Anaerobic oxidation of saturated-hydrocarbons to CO2 by a new type of sulfate-reducing bacterium[J].Arch microbiol,1991,156(1):5-14.
    [35]AECKERSBERG F,RAINEY F A,WIDDEL F.Growth,natural relationships,cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions[J].Arch microbiol,1998,170(5):361-369.
    [36]SO C M,YOUNG L Y.Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J].Appl environ microbiol,1999,65(7):2969-2976.
    [37]DAVIDOVA I A,DUNCAN K E,CHOI O K,et al.Desulfoglaeba alkanexedens gen.nov.,sp nov.,an n-alkane-degrading,sulfate-reducing bacterium[J].Int j syst evol microbiol,2006,56:2737-2742.
    [38]LOVLEY D R,BAEDECKER M J,LONERGAN D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339(6222):297-300.
    [39]ZENGLER K,RICHNOW H H,ROSSELLO-MORA R,et al.Methane formation from long-chain alkanes by anaerobic microorganisms[J].Nature,1999,401(6750):266-269.
    [40]NZILA A.Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions:Overview of studies,proposed pathways and future perspectives[J].Environ pollut,2018,239:788-802.
    [41]HEIDER J,FUCHS G.Microbial anaerobic aromatic metabolism[J].Anaerobe,1997,3(1):1-22.
    [42]ACOSTA-GONZALEZ A,ROSSELLO-MORA R,MAR-QUES S.Characterization of the anaerobic microbial community in oil-polluted subtidal sediments:Aromatic biodegradation potential after the prestige oil spill[J].Environ microbiol,2013,15(1):77-92.
    [43]COATES J D,ANDERSON R T,WOODWARD J C,et al.Anaerobic hydrocarbon degradation in petroleumcontaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions[J].Environ sci technol,1996,30(9):2784-2789.
    [44]CALDWELL M E,GARRETT R M,PRINCE R C,et al.Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions[J].Environ sci technol,1998,32(14):2191-2195.
    [45]LYLES C N,LE H M,BEASLEY W H,et al.Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion[J].Frontiers in microbiology,2014,5:114.
    [46]PARTHIPAN P,ELUMALAI P,TING Y P,et al.Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX[J].Int biodeterior biodegrad,2018,129:67-80.
    [47]RAJASEKAR A,BALASUBRAMANIAN R,KUMA J VM.Role of hydrocarbon degrading bacteria serratia marcescens ACE2 and bacillus cereus ACE4 on corrosion of carbon steel API 5LX[J].Industrial&engineering chemistry research,2011,50(17):10041-10046.
    [48]OKORO C,SMITH S,CHIEJINA L,et al.Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria[J].J ind microbiol biotechnol,2014,41(4):665-678.
    [49]VANS I,THRASHER D R.Reservoir souring:Mechanism and prevention[M].Washington,DC:ASM Press,2005.
    [50]LITTLE B J,LEE J S.Microbiologically influenced corrosion:An update[J].Int mater rev,2014,59(7):384-393.
    [51]ENNING D,GARRELFS J.Corrosion of iron by sulfate-reducing bacteria:New views of an old problem[J].Appl environ microbiol,2014,80(4):1226-1236.
    [52]VIGNERON A,ALSOP E B,CHAMBERS B,et al.Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility[J].Appl environ microbiol,2016,82(8):2545.
    [53]LENHART T R,DUNCAN K E,BEECH I B,et al.Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces[J].Biofouling,2014,30(7):823-835.
    [54]DAVEY M E,WOOD W A,KEY R,et al.Isolation of three species of geotoga and petrotoga:Two new genera,representing a new lineage in the bacterial line of descent distantly related to the thermotogales[J].Syst appl microbiol,1993,16(2):191-200.
    [55]USHER K M,KAKSONEN A H,MACLEOD I D.Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria[J].Corros sci,2014,83:189-197.
    [56]ZHANG T,FANG H H P,KO B C B.Methanogen population in a marine biofilm corrosive to mild steel[J].Appl microbiol biotechnol,2003,63(1):101-106.
    [57]DANIELS L,BELAY N,RAJAGOPAL B S,et al.Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J].Science,1987,237(4814):509-511.
    [58]HILL E C.Fuels[M].New York:Wiley,1987.
    [59]BENTO F M,GAYLARDE C C.Microbial contamination of stored diesel oil in Brasil[J].Rev microbiol,1996,27(3):192-196.
    [60]GAYLARDE C C,BENTO F M,KELLEY J.Microbial contamination of stored hydrocarbon fuels and its control[J].Rev microbiol,1999,30(1):1-10.
    [61]LYLES C N,AKTAS D F,DUNCAN K E,et al.Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion[J].Environ sci technol,2013,47(11):6052-6062.
    [62]WEDEL R V.Technical handbook for marine biodiesel in recreational boats[J].Biodiesel fuels,1999(4):22.
    [63]AKTAS D F,LEE J S,LITTLE B J,et al.Anaerobic metabolism of biodiesel and its impact on metal corrosion[J].Energy&fuels,2010,24(5):2924-2928.
    [64]LEE J S,RAY R I,LITTLE B J,et al.Sulphide production and corrosion in seawaters during exposure to FAMEdiesel[J].Biofouling,2012,28(5):465-478.
    [65]LIANG R X,AKTAS D F,AYDIN E,et al.Anaerobic biodegradation of alternative fuels and associated biocorrosion of carbon steel in marine environments[J].Environ sci technol,2016,50(9):4844-4853.
    [66]管方.阴极保护下硫酸盐还原菌腐蚀机理研究[D].青岛:中国科学院大学(中国科学院海洋研究所),2017.GUAN Fang.Research on the corrosion mechanism of sulfate-reducing bacteria under cathodic protection[D].Qingdao:Institute of Oceanology,Chinese Academy of Science,2017.
    [67]JIA R,YANG D,RAHMAN H B A,et al.An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel[J].Corros sci,2018,139:301-308.
    [68]DUAN J,WU S,ZHANG X,et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J].Electrochim acta,2008,54(1):22-28.
    [69]YU L,DUAN J Z,DU X Q,et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J].Electrochem commun,2013,26:101-104.
    [70]BONIFAY V,WAWRIK B,SUNNER J,et al.Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion[J].Frontiers in microbiology,2017,8(140):99.
    [71]LI X,DUAN J,XIAO H,et al.Analysis of bacterial community composition of corroded steel immersed in sanya and Xiamen seawaters in China via method of illumina miseq sequencing[J].Frontiers in microbiology,2017,8:1737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700