MoS_2-石墨烯的制备及其电催化析氢性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of MoS_2/graphene composites and its electrocatalytic water splitting performance
  • 作者:王易娜 ; 杜记民 ; 李凯迪 ; 杨梦可 ; 崔先露 ; 程雪纯 ; 任小飞
  • 英文作者:WANG Yi-na;DU Ji-min;LI Kai-di;YANG Meng-ke;CUI Xian-lu;CHENG Xue-chun;REN Xiao-fei;College of Chemistry and Molecular Engineering,Zhengzhou University;College of Chemistry&Chemical Engineering,Anyang Normal University;
  • 关键词:石墨烯 ; 二硫化钼 ; 光分解沉积法 ; 氢还原反应 ; 电催化分解水
  • 英文关键词:graphene;;MoS_2;;photodecomposition deposition;;HER;;electrocatalytic water splitting
  • 中文刊名:HXYJ
  • 英文刊名:Chemical Research and Application
  • 机构:郑州大学化学与分子工程学院;安阳师范学院化学化工学院;
  • 出版日期:2019-04-15
  • 出版单位:化学研究与应用
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(210030010)资助;; 河南省科技创新杰出青年项目(144100510005)资助;; 河南省高校创新人才项目(13HASTIT014)资助
  • 语种:中文;
  • 页:HXYJ201904016
  • 页数:7
  • CN:04
  • ISSN:51-1378/O6
  • 分类号:100-106
摘要
本文利用改进的Hummers方法合成层状的石墨烯,并用原位合成法在石墨烯上负载了颗粒状二硫化钼。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X-射线光电子能谱分析仪(XPS)、粉末X-射线衍射仪(XRD)、比表面及孔隙度分析仪对所合成物质的形貌、结构、比表面积及孔径进行分析;使用电化学工作站测试催化剂的线性循环伏安和Tafel曲线来分析所合成催化剂的电化学析氢性能。结果表明在所有样品中石墨烯/二硫化钼-21.7复合物的电催化性能最好,其在电流密度为-10 mA·cm~(-2)时过电位为-193 mV。
        In this paper,layered grapheme was synthesized by improved Hummers method.With ammonium tetrathiomolybdate as precursor.Synthesized nanoparticle shaped MoS_2/graphene composites by the method of photodeposition under nitrogen atmosphere.Then,Scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),X-ray diffractometer(XRD)and specific surface and porosity analyzer were applied to analyse their morphology,structure,surface area and pore volume of composites.Linear cyclic voltammetry and Tafel plots were tested by electrochemical workstation to analyse the performance of hydrogen evolution reaction(HER).The results indicate that MoS_2/graphene-21.7 composite has the best performance compared with other samples,which can achieve a overpotential of-193 mV at the current density of-10 mA·cm~2.
引文
[1] Yang M Q,Han C,Xu Y J.Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites[J].Phys Chem C,2015,119(49):27234-27246.
    [2] 张志,唐涛,陆光达.甲烷催化裂解制氢技术研究进展[J].化学研究与应用,2007,19(1):1-9.
    [3] 黄素芳,徐全清.多联吡啶Pt(II)、Pd(II)配合物的合成及制氢研究[J].化学研究与运用,2013,25(5):684-689.
    [4] Li Y X,Wang H,Peng S Q,et al.Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation[J].Phys Chem C,2014,118(34):19842-19848.
    [5] 向翠丽,费锡明,李俊华.Ni-W-TiO2复合电极在碱性介质中的析氢电催化性能[J].化学研究与应用,2005,17(5):664-666.
    [6] Lu Z H,Tan H,Xin J P,et al.Metallic intermediate phase inducing morphological transformation in thermal nitridation:Ni3FeN-Based three-dimensional hierarchical electrocatalyst for water splitting[J].ACS Appl Mater Interfaces,2018,10(4):3699-3706.
    [7] Zhang Z X,Wang Y X,Leng X X.Controllable edge exposure of MoS2 for efficient hydrogen evolution with high current density[J].ACS Appl Mater Interfaces,2018,1(3):1268-1275.
    [8] Chang K,Wang T,Kang Q,et al.MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J].ACS Nano,2014,8(7):7078-7087.
    [9] Kumar S,Sahoo P K,Satpati A k.Electrochemical and SECM investigation of MoS2/GO and MoS2/rGO nanocomposite materials for HER electrocatalysis[J].ACS omega,2017,2(11):7532-7545.
    [10]Chun K C,Adeline H L,Martin P.Nanostructured MoS2 nanorose/graphene nanoplatelet hybrids for electrocatalysis[J].Chem Eur J,2016,22(17):5969-5975.
    [11]Liu Y Z,Liu J P,Li Z,et al.Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution[J].Int J Hydrogen Energy,2018,43(30):13946-13952.
    [12]Xu X B,Sun Y,Qiao W,et al.3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution[J].Applied Surface Science,2017,396:1520-1527.
    [13] Ma L B,Hu Y,Zhu G Y,et al.In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction[J].Chem Mater,2016,28(16):5733-5742.
    [14] Li Y T,Zhang L A,Qin Y,et al.Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction[J].ACS Catal,2018,8(7):5714-5720.
    [15] Qin F,Zhao Z H,Alam M K,et al.Trimetallic NiFeMo for overall electrochemical water splitting with a low Cell voltage[J].ACS Energy Lett,2018,3(3):546-554.
    [16] 赵旭,罗来涛,刘成文,等.模板剂和制备条件对介孔CeO2材料性能的影响[J].化学研究与应用,2007,19(8):858-862.
    [17] Qian Y T,Yang M K,Zhang F F,et al.A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts[J].Materials Characterization,2018,142:43–49.
    [18] Das S,Ghosh R,Routh P,et al.Conductive MoS2 quantum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties[J].ACS Appl Mater Interfaces,2018,1(5):2306-2316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700