航空遥感平台通用物理模型及可变基高比系统精度评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Normal Physics Model of Aerial Remote Sensing Platform and Systemic Accuracy Assessment Variable Baseline-height Ratio
  • 作者:晏磊 ; 李英成 ; 赵世湖 ; 袁修孝 ; 宋妍 ; 钟裕标 ; 薛庆生
  • 英文作者:YAN Lei;LI Yingcheng;ZHAO Shihu;YUAN Xiuxiao;SONG Yan;ZHONG Yubiao;XUE Qingsheng;Institute of Remote Sensing and Geographic Information System,Beijing Key Lab. of Spatial Information Integration and Its Applications,Peking University;Chinese Academy of Surveying and Mapping;China TOPRS Technology Co.Ltd.,Beijing;Satellite Surveying and Mapping Application Center,NASG;School of Remote Sensing and Information Engineering,Wuhan University;Faculty of Information Engineering,China University of Geosciences,Wuhan;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences;
  • 关键词:系统精度 ; 数字航摄相机 ; 通用物理模型 ; 可变基高比时空模型 ; 单刚体 ; n次折反式同光路系统
  • 英文关键词:systemic accuracy;;digital aerial camera;;normal physical model of digital aerial camera;;variable baseline-height ratio spatial temporal model;;single rigid structure;;catadioptric optical mirror
  • 中文刊名:CHXB
  • 英文刊名:Acta Geodaetica et Cartographica Sinica
  • 机构:北京大学遥感与地理信息系统研究所北京市空间信息集成与3S应用北京市重点实验室;中国测绘科学研究院;中测新图(北京)遥感技术有限责任公司;国家测绘地理信息局卫星测绘应用中心;武汉大学遥感信息工程学院;中国地质大学(武汉)信息工程学院;中国科学院长春光学精密机械与物理研究所;
  • 出版日期:2018-06-15
  • 出版单位:测绘学报
  • 年:2018
  • 期:v.47
  • 基金:国家重大计划研发项目(2017YFB0503003);; 国家自然科学基金(11174017);; 国家863计划(2007AA12Z111;2006AA12Z119);; 高等学校博士学科点专项科研基金(20130001110046)~~
  • 语种:中文;
  • 页:CHXB201806008
  • 页数:12
  • CN:06
  • ISSN:11-2089/P
  • 分类号:62-73
摘要
精度是高分辨率遥感和摄影测量的关键。影响精度的因素分为:成像系统误差和数据处理误差。航空平台系统误差较为复杂,因此本文聚焦航空成像系统设计方法,以降低航空成像系统误差为目标,从源头上为数据处理精度提供保障。目前航空数字成像系统种类繁多,但缺乏统一物理模型,使得航空相机系统采用人工拼接为多刚体(多相机),结构复杂、体积大、成本高、精度难以刻画,容易受到震动和温度等因素影响,成像系统装机实用精度只能达到毫米量级。为此,本文构建航空遥感平台通用物理模型,由此归纳出现有航摄相机的四类对偶技术特征:一次-二次成像、外拼接-内拼接、单基线-多基线、非严格-严格中心投影;以此建立可变基高比时空模型,从而实现数字航摄相机内部光学机械参数与地表高程精度的表达,实现地表高程精度-光机参数贯通;进一步设计二次成像数字航摄相机原型系统及宽波段临边成像光谱仪,为目前多刚体拼接的一次成像航摄相机构建向精密光机单刚体、折反式同光路构建提供原型依据,为数字航摄系统构建和工业化奠定理论基础和原型实例参考。
        Accuracy is a key factor in high-resolution remote sensing and photogrammetry.The factors that affect accuracy are imaging system errors and data processing errors.Because of the complexity of aerial camera system errors,this paper focuses on the design of digital aerial camera system,to reduce the system error and provide data procession fundamentally.There are many kinds of digital aerial camera system at present,but lacking a unified physical model,which causes the system to be built in multi-camera and multi-rigid model.Such system is complex,costly,and difficult to describe,and is easily affected by factors such as vibration and temperature,so the installed accuracy can only reach millimeter level.For this reason,this paper proposes the unified physical structure of digital aerial camera,which imitates the theory of out-of-field multi-CCD,in-field multi-CCD,and once-imaging and twice-imaging digital camera systems.Considering this,the spatial-temporal representation of the variable baseline-height ratio is established.From the variable baseline-height ratio,we can link the optomechanical spatial parameters with the elevation accuracy,so that to achieve connection between the surface elevation with opto-mechanical structural parameter;further designing the twice-imaging digital camera prototype system and the wideband limb imaging spectrometer,which provides prototype for transformation from the current multi-rigid,one-time imaging aerial camera to single rigid structure.Our research has laid a theoretical foundation and prototype references for the construction and industrialization of digital aerial system.
引文
[1]李德仁,袁修孝.误差处理与可靠性理论[M].2版.武汉:武汉大学出版社,2013.LI Deren,YUAN Xiuxiao.Error Processing and Reliability Theory[M].2nd ed.Wuhan:Press of Wuhan University,2013.
    [2]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2001.ZHANG Zuxun,ZHANG Jianqing.Principles of Digital Photogrammetry[M].Wuhan:Press of Wuhan University,2001.
    [3]童小华,叶真,刘世杰.高分辨率卫星颤振探测补偿的关键技术方法与应用[J].测绘学报,2017,46(10):1500-1508.DOI:10.11947/j.AGCS.2017.20170384.TONG Xiaohua,YE Zhen,LIU Shijie.Essential Technology and Application of Jitter Detection and Compensation for High Resolution Satellites[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1500-1508.DOI:10.11947/j.AGCS.2017.20170384.
    [4]张建霞,刘宗杰,刘先林.国产数码航摄仪应用于我国西部测图分析[J].测绘科学,2010,35(1):36-38.ZHANG Jianxia,LIU Zongjie,LIU Xianlin.The Simple Analysis of the Application of Chinese Digital Aerial Camera to Western Mapping in China[J].Science of Surveying and Mapping,2010,35(1):36-38.
    [5]段福洲,宫辉力,李小娟,等.SWDC数字航空摄影仪在特大地震灾害中的应用[J].自然灾害学报,2009,18(5):36-40.DUAN Fuzhou,GONG Huili,LI Xiaojuan,et al.Application of SWDC Aerial Digital Camera to Violent Earthquake Disasters[J].Journal of Natural Disasters,2009,18(5):36-40.
    [6]李天子,王留召.大面阵数字航摄仪-SWDC系统优势及应用[J].辽宁工程技术大学学报(自然科学版),2013,32(6):797-801.LI Tianzi,WANG Liuzhao.System Advantage and Application of Digital Airborne Photogrammetric Camera-SWDC With Larger Plane Array[J].Journal of Liaoning Technical University(Natural Science),2013,32(6):797-801.
    [7]何欣年.航空数字相机的发展与应用[J].遥感技术与应用,2000,15(2):124-129.HE Xinnian.Development and Application of Airborne Digital Camera[J].Remote Sensing Technology and Application,2000,15(2):124-129.
    [8]李健,刘先林,刘凤德,等.SWDC-4大面阵数码航空相机拼接模型与立体测图精度分析[J].测绘科学,2008,33(2):104-106.LI Jian,LIU Xianlin,LIU Fengde,et al.Mosaic Model of SWDC-4 Large Form at Aerial Digital Camera and Accuracy Analysis of Stereo Mapping[J].Science of Surveying and Mapping,2008,33(2):104-106.
    [9]HINZ A,HEIER H.The Z/I Imaging Digital Camera System[J].The Photogrammetric Record,2000,16(96):929-936.
    [10]赵桂华.大面阵CCD数字航空相机影像预处理技术研究[D].郑州:解放军信息工程大学,2012.ZHAO Guihua.Research on Image Preprocessing of Large Format CCD Digital Aerial Camera[D].Zhengzhou:PLAInformation Engineering University,2012.
    [11]方勇,崔卫平,马晓锋,等.单镜头多面阵CCD相机影像拼接算法[J].武汉大学学报(信息科学版),2012,37(8):906-910.FANG Yong,CUI Weiping,MA Xiaofeng,et al.Image Stitching Algorithm of Digital Camera with Single Field Lens and Multiple Area CCD[J].Geomatics and Information Science of Wuhan University,2012,37(8):906-910.
    [12]LEBERL F,GRUBER M.ULTRACAM-D:Understanding Some Noteworthy Capabilities[C]∥Photogrammetric Week 2005.Stuttgart:[s.n.],2005:57-68.
    [13]沈添天,赵康年,赵世湖,等.二次成像航摄相机数字后背的设计与定标[J].全球定位系统,2009,34(3):33-37.SHEN Tiantian,ZHAO Kangnian,ZHAO Shihu,et al.Design and Calibration for Digital Backing System of Twice-Imaging Aviation Camera[J].GNSS World of China,2009,34(3):33-37.
    [14]段依妮.遥感影像立体定位的相对辐射校正和数字基高比模型理论研究[D].北京:北京大学,2015.DUAN Yini.Study on Relative Radiometric Correction and Digital Baseline-height Ratio Model for Stereo Mapping[D].Beijing:Peking University,2015.
    [15]CRAIG J C.Comparison of Leica ADS40and Z/I Imaging DMC High-resolution Airborne Sensors[C]∥Proceedings of Volume 5655,Multispectral and Hyperspectral Remote Sensing Instruments and Applications II.Honolulu,Hawai’i:SPIE,2005,5655:271-281.
    [16]王之卓.摄影测量原理[M].武汉:武汉大学出版社,2007.WANG Zhizhuo.Principles of Photogrammetry[M].Wuhan:Press of Wuhan University,2007.
    [17]ACKERMANN F.Practical Experience with GPS Supported Aerial Triangulation[J].The Photogrammetric Record,1994,14(84):860-874.
    [18]段依妮.遥感影像立体定位的相对辐射校正和数字基高比模型理论研究[J].测绘学报,2015,44(2):235-235.DOI:10.11947/j.AGCS.2015.20140373.DUAN Yini.Study on Relative Radiometric Correction and Digital Baseline-height Ratio Model for Stereo Mapping[J].Acta Geodaetica et Cartographica Sinica,2015,44(2):235-235.DOI:10.11947/j.AGCS.2015.20140373.
    [19]张剑清,胡安文.多基线摄影测量前方交会方法及精度分析[J].武汉大学学报(信息科学版),2007,32(10):847-851.ZHANG Jianqing,HU Anwen.Method and Precision Analysis of Multi-baseline Photogrammetry[J].Geomatics and Information Science of Wuhan University,2007,32(10):847-851.
    [20]DUAN Yini,YAN Lei,ZHONG Yubiao,et al.A New Method of Improving Height Accuracy of Airborne Photogrammetry Using a Multi-camera System[C]∥Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium.Qubec City:IEEE,2014:13-18.
    [21]姚继锋.多传感器集成检校的理论方法与实践[D].青岛:山东科技大学,2011.YAO Jifeng.The Theoretical Approach and Praxis of Multi-sensor System Calibration[D].Qingdao:Shandong University of Science and Technology,2011.
    [22]张祖勋.航空数码相机及其有关问题[J].测绘工程,2004,13(4):1-5.ZHANG Zuxun.Aspects on Aerial Digital Cameras[J].Engineering of Surveying and Mapping,2004,13(4):1-5.
    [23]赵世湖.数字航摄相机几何辐射传输模型的建立及二次成像原型系统验证[D].北京:北京大学,2010.ZHAO Shihu.Digital Aerial Camera's Geometric Radiative Modeling and Its Validation in Twice Imaging Prototype System[D].Beijing:Peking University,2010.
    [24]张红蕾.新型航摄相机多路成像控制与光机结构设计及一体化实现[D].北京:中国矿业大学,2009.ZHANG Honglei.Multi-channel Imaging Control and Opto-mechanical Structure Design and Integrated Implementation of New Aerial Camera[D].Beijing:China University of Mining and Technology,2009.
    [25]DALSA Professional Imaging.FTF4052M22Mfull-frame CCD image sensor data sheet[M].Canada:DALSA,2006.
    [26]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2011.YU Daoyin,TAN Hengying.Engineering Optics[M].Beijing:China Machine Press,2011.
    [27]薛庆生.折反式大口径星敏感器光学设计及杂散光分析[J].光学学报,2016,36(2):171-177.XUE Qingsheng.Optical Design and Stray Light Analysis for Large Aperture Catadioptricstar Sensor[J].Acta Optica Sinica,2016,36(2):171-177.
    [28]晏磊,李英成,段晓辉,等.一种二次成像摄影方法及装置:中国,CN200710099585.7[P].2007-10-24.YAN Lei,LI Yingcheng,DUAN Xiaohui,et al.Secondary Imaging Shooting Method and Device:CN,CN200710099585.7[P].2007-10-24.
    [29]晏磊,段依妮,赵红颖,等.一种利用数字基高比时间模型的高程定位精度提升方法:中国,CN201410406891.0[P].2014-08-18.YAN Lei,DUAN Yini,ZHAO Hongying,et al.Elevation Positioning Accuracy Lifting Method Using Digital Baseheight Ratio Time Model:CN,CN201410406891.0[P].2014-08-18.
    [30]晏磊,赵海盟,段依妮,等.一种基于数字基高比模型的高程精度估算方法:中国,CN201410058165.4[P].2014-02-20.YAN Lei,ZHAO Haimeng,DUAN Yini,et al.Vertical Accuracy Estimation Method Based on Digital Base-height Ratio Model:CN,CN201410058165.4[P].2014-02-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700