大型煤制烯烃工程蒸汽动力系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on steam power system in larger scale coal to olefin plant
  • 作者:巴黎明 ; 张峰 ; 黄峰 ; 李初福 ; 姚金松
  • 英文作者:BA Liming;ZHANG Feng;HUANG Feng;LI Chufu;YAO Jinsong;National Institute of Clean-and-Low-Carbon Energy;
  • 关键词:煤制烯烃 ; 蒸汽动力系统 ; 超临界 ; 零备用
  • 英文关键词:coal to olefin;;steam power system;;supercritical;;non-backup
  • 中文刊名:JJMS
  • 英文刊名:Clean Coal Technology
  • 机构:北京低碳清洁能源研究所;
  • 出版日期:2017-02-14 09:05
  • 出版单位:洁净煤技术
  • 年:2017
  • 期:v.23;No.107
  • 基金:国家高技术研究发展计划(863计划)资助项目(2011AA05A202)
  • 语种:中文;
  • 页:JJMS201701014
  • 页数:6
  • CN:01
  • ISSN:11-3676/TD
  • 分类号:78-82+88
摘要
为了解决煤制烯烃工程蒸汽动力系统存在的参数低、煤耗高、备用量大、管网不平衡等影响系统大型化的关键性问题,对运行中系统的数据进行了分析,通过引入超临界燃煤机组和总管制蒸汽管路等方法,提出了一种适应于更大规模煤制烯烃工程的蒸汽动力系统设计形式。在120万t/a煤制系统工程蒸汽动力系统设计中,配置2台350 MW超临界燃煤机组,结合8~9级回热和1级再热系统,可以将系统供电煤耗降低从450 g/k Wh降低到320 g/k Wh。利用机组间总管制的蒸汽管道可以实现蒸汽管网的灵活切换,在"零备用"条件下满足年运行8 000 h以上的高可靠性要求。系统发电出力不仅可以满足煤制烯烃工程自用要求,还可以向周围电网输出255 MW。该系统具有良好的扩展性,可以随煤制烯烃工程规模的变化灵活配置,满足未来更大规模工程的需求。
        In order to solve the problems of steam power system in coal to olefins( CTO) project,like low steam parameters,high coal consumption and standby capacity,network imbalance,the characteristics of steam power system were analyzed. By introducing supercritical coal power units and a manifold steam pipe system,a new design concept in large-scale CTO project was presented. In a 1. 2 Mt/a CTO steam power system,a combination of two 350 MW supercritical coal power units with 8-9 regenerative and 1 reheat system,reduced coal consumption rate from 450 g/k Wh to 320 g/k Wh.A manifold steam pipe system helped to achieve flexible switching between units,to meet a 8 000 h/a high reliability standard with zero standby.System power output met the requirements of CTO project,and it could serve 255 MW to power grid.The system had good expansibility to meet different scale of the CTO project in the future.
引文
[1]张玉卓.神华现代煤制油化工工程建设与运营实践[J].煤炭学报,2011,36(2):179-184.Zhang Yuzhuo.Construction and operation of Shenhua's modern coal-to liquid-and-chemicals demonstration projects[J].Journal of China Coal Society,2011,36(2):179-184.
    [2]吴秀章.煤制低碳烯烃工艺与工程[M].北京:化学工业出版社,2015:6.
    [3]项东,彭丽娟,杨思宇,等.石油与煤路线制烯烃过程技术评述[J].化工进展,2013,32(5):959-970.Xiang Dong,Peng Lijuan,Yang Siyu,et al.A review of oil-based and coal-based processes for olefins production[J].Chemical Industry and Engineering Progress,2013,32(5):959-970.
    [4]张湘江,张成吉,张新凤.运用火用概念和层次分析法对煤化工系统蒸汽平衡方案的优化设计[J].煤化工,2010,38(2):8-13.Zhang Xiangjiang,Zhang Chengji,Zhang Xinfeng.Optimized design of the steam balance program for coal chemical plants by introducing the exergy concept and AHP[J].Coal Chemical Industry,2010,38(2):8-13.
    [5]孙晓红,刘文娟.中压饱和蒸汽透平在煤化工企业的应用[J].化肥设计,2013(1):12-14.Sun Xiaohong,Liu Wenjuan.Application of medium pressure saturation steam turbine in coal and chemical enterprises[J].Chemical Fertilizer Design,2013(1):12-14.
    [6]高聚忠.煤气化技术的应用与发展[J].洁净煤技术,2013,19(1):65-71.Gao Juzhong.Application and development of coal gasification technologies[J].Clean Coal Technology,2013,19(1):65-71.
    [7]汪宝林.煤气化化学与技术进展[J].洁净煤技术,2014,20(3):69-74.Wang Baolin.Chemistry and technology progress of coal gasification[J].Clean Coal Technology,2014,20(3):69-74.
    [8]刘永健,何畅,冯霄,等.煤制合成天然气装置能耗分析与节能途径探讨[J].化工进展,2013,32(1):48-53,103.Liu Yongjian,He Chang,Feng Xiao,et al.Analysis of energy consumption and energy saving approach in a coal to SNG plant[J].Chemical Industry and Engineering Progress,2013,32(1):48-53,103.
    [9]高健,倪维斗,李政,等.IGCC系统关键部件的选择及其对电厂整体性能的影响—(Ⅱ):余热锅炉篇[J].动力工程,2007,27(6):985-989.Gao Jian,Ni Weidou,Li Zheng,et al.Option of IGCC system's key components and their influence on the power plant's overal performance(II):the HRSG[J].Power Engineering,2007,27(6):985-989.
    [10]张建宇,吕待清.一氧化碳变换工艺分析[J].化肥工业,2000,27(5):26-32.Zhang Jianyu,Lyu Daiqing.Analysis of carbon monoxide shift conversion process[J].Journal of the Chemical Fertilizer Industry,2000,27(5):26-32.
    [11]余建良.1 800 kt/a煤制甲醇装置净化系统优化设计及应用[J].化肥工业,2014(2):50-53.Yu Jianliang.Optimized design and use of purification system for 1800 kt/a coal-based methanol plant[J].Journal of the Chemical FertilizerIndustry,2014(2):50-53.
    [12]郭平利.煤制甲醇项目蒸汽系统管网的设计[J].化工设计,2012(4):22-23,45.Guo Pingli.steam system piping design of coal-to-methanol project[J].Chemical Engineering Design,2012(4):22-23,45.
    [13]王建辉.煤制甲醇装置蒸汽系统的优化与改进[J].大氮肥,2015,38(5):161-164.Wang Jianhui.Optimization and improvement of coal to methanol plant steam system[J].Large Scale Nitrogenous Fertilizer Industry,2015,38(5):161-164.
    [14]杨国锋,陈峰.煤化工项目全厂蒸汽平衡的经验总结[J].广州化工,2013,41(1):153-155.Yang Guofeng,Chen Feng.Experience summary of entire plant steam balance in coal chemical project[J].Guangzhou Chemical Industry and Technology,2013,41(1):153-155.
    [15]杨银仁.大型煤化工装置全厂蒸汽系统和凝结水系统的优化[J].大氮肥,2015,38(3):161-164.Yang Yinren.Plantwide steam system and condensate system optimization in large scale coal chemical industry plant[J].Large Scale Nitrogenous Fertilizer Industry,2015,38(3):161-164.
    [16]舒歌平.煤炭液化技术[M].北京:煤炭工业出版社,2003:89.
    [17]林泉.发展煤化工所面临的CO2排放问题及其对策[J].化学工业,2007,25(7):17-20,28.Lin Quan.CO2Emission Issue in developing coal chemical industry and preliminary discussion on the emission reduction methods[J].Chemical Industry,2007,25(7):17-20,28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700