亚熔盐低温浸取钾长石工艺过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Leaching Process of Potassium Feldspar by Sub-Molten Salt at Low Temperature
  • 作者:姜炜 ; 罗孟杰 ; 刘程琳 ; 李平 ; 于建国
  • 英文作者:JIANG Wei;LUO Mengjie;LIU Chenglin;LI Ping;YU Jianguo;National Engineering Research Center for Integrated Utilization of Salt Lake Resources, State Key Laboratory of Chemical Engineering, East China University of Science and Technology;
  • 关键词:钾长石 ; 氢氧化钾 ; 亚熔盐 ; 低温浸取
  • 英文关键词:potassium feldspar;;KOH;;sub-molten salt;;leaching at low temperature
  • 中文刊名:HLDX
  • 英文刊名:Journal of East China University of Science and Technology
  • 机构:华东理工大学国家盐湖资源综合利用工程技术研究中心化学工程联合国家重点实验室;
  • 出版日期:2018-09-21 15:15
  • 出版单位:华东理工大学学报(自然科学版)
  • 年:2019
  • 期:v.45
  • 基金:国家自然科学基金(21776089,U1610102);; 政府间国际合作项目(2016YFE0132500,2015DFG42220)
  • 语种:中文;
  • 页:HLDX201902003
  • 页数:10
  • CN:02
  • ISSN:31-1691/TQ
  • 分类号:27-36
摘要
采用KOH亚熔盐在常压低温条件下浸取河北灵寿县钾长石粗矿,回收K、Al、Si有价元素,研究浸取温度、碱矿质量比、搅拌速率以及反应时间对钾长石粗矿中K、Al、Si元素浸出率的影响。结果发现:在常压、230℃、碱矿质量比3∶1、搅拌速率500 r/min和反应时间150 min时,KOH亚熔盐能够较好分解钾长石,K、Al、Si元素浸出率分别达到98.3%、96.9%和94.3%。在浸出动力学实验数据基础上,进一步采用未反应收缩核模型计算K、Al、Si的浸出活化能,结果表明表面化学反应为浸出过程的控制步骤。
        Potassium feldspar crude ore came from Lingshou County, Hebei Province, which mainly contained K2 O(w=13.71%), Al_2O_3(w=21.51%) and SiO2(w=61.02%) based on the mineralogical characteristics analysis by inductively coupled plasma optical emission spectrometry(ICP-OES) and X-ray fluorescence(XRF). To recover valuable elements including K, Al, Si from potassium feldspar crude ore for preparation of high quality products, KOH sub-molten salt method was adopted to decompose potassium feldspar crude ore at low temperature under atmospheric conditions. The effects of leaching temperature, alkali-to-ore mass ratio, stirring rate and leaching time on the leaching rates of K, Al, Si from potassium feldspar crude ore were investigated, respectively. Both thermodynamic analysis and experimental results demonstrated that the concentrated alkali solution(w KOH=89.66%) at sub-molten salt state had a high chemical reaction activity, which could decompose potassium feldspar crude ore at a relatively low temperature,such as 230 ℃. With alkali-to-ore mass ratio of 3∶1, stirring rate of 500 r/min, leaching time of 150 min, the leaching rates of K, Al, Si from potassium feldspar crude ore at 230 ℃ were 98.3%, 96.9% and 94.3%, respectively. X-ray diffraction(XRD) spectra of products also demonstrated that potassium feldspar crude ore almost completely decomposed. The unreacted shrinking core model with the surface chemical reaction control was used to predict the leaching kinetics of potassium feldspar crude ore by KOH sub-molten salt at the temperature range of 220-250 ℃.Based on the experimental data of leaching kinetics, the apparent activation energy of K, Al, Si were calculated as 84.2,79.1, 78.3 kJ/mol, respectively.
引文
[1]莫淳,廖文杰,梁斌,等.工业固废活化钾长石-CO2矿化提钾的生命周期碳排放与成本评价[J].化工学报,2017,68(6):2501-2509.
    [2]王渭清,潘磊,李龙涛,等.钾长石资源综合利用研究现状及建议[J].中国矿业,2012,21(10):53-57.
    [3]JOYCE A O.Mineral Commodity Summaries2017[R].United States:Geological Survey,2017:128-129.
    [4]鲍园,许妍霞,宋兴福,等.钾盐尾矿胶结工艺的优化研究[J].华东理工大学学报(自然科学版),2016,42(3):308-313.
    [5]刘雨蒙,马广鑫.中国铝资源行业现状研究及发展建议[J].中国矿业,2016,25(8):53-57.
    [6]HAYASE G,KUGIMIYA K,OGAWA M,et al.The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators[J].Journal of Materials Chemistry A,2014,2(18):6525-6531.
    [7]DORCHEH A S,ABBASI M H.Silica aerogel:Synthesis,properties and characterization[J].Journal of Materials Processing Technology,2008,199(1/3):10-26.
    [8]OH K W,KIM D K,KIM S H.Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation[J].Fibers&Polymers,2009,10(5):731-737.
    [9]史慧,樊兆玉,刘洪来.表面改性纳米二氧化硅颗粒乳化十二醇-甘油体系[J].华东理工大学学报(自然科学版),2016,42(1):15-20.
    [10]LIN Y F,YE Q,HSU S H,et al.Reusable fluorocarbonmodified electrospun PDMS/PVDF nanofibrous membranes with excellent CO2 absorption performance[J].Chemical Engineering Journal,2016,284:888-895.
    [11]MATIAS T,MARQUES J,QUINA M J,et al.Silica-based aerogels as adsorbents for phenol-derivative compounds[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2015,480:260-269.
    [12]GORLE B S K,SMIRNOVA,MCHUGH M A.Adsorption and thermal release of highly volatile compounds in silica aerogels[J].Journal of Supercritical Fluids,2009,48(1):85-92.
    [13]VERES P,LóPEZPERIAGO A M,LáZáR I,et al.Hybrid aerogel preparations as drug delivery matrices for low watersolubility drugs[J].International Journal of Pharmaceutics,2015,496(2):360-370.
    [14]韩效钊,胡波,陆亚玲,等.钾长石与氯化钠离子交换动力学[J].化工学报,2006,57(9):2201-2206.
    [15]胡天喜,于建国.CaCl2-NaCl混合助剂分解钾长石提取钾的实验研究[J].过程工程学报,2010,10(4):701-705.
    [16]马鸿文,苏双青,杨静,等.钾长石水热碱法制取硫酸钾反应原理与过程评价[J].化工学报,2014,65(6):2363-2371.
    [17]NIE Y M,MA H W,LIU H,et al.Reactive mechanism of potassium feldspar dissolution under hydrothermal condition[J].Journal of the Chinese Ceramic Society,2006,34(7):847-850.
    [18]GRUDEV S.Use of heterotrophic microorgamsms in mineral bictechnology[J].Acta Biotechno,1987,7(4):299-306.
    [19]KARAVAIKO G I.Role of micwoganisms and some physico-chemical factors of the medium in quartz destruction[J].Moikrobiologiya,1984,53(6):976-981.
    [20]GLOWA K R,AROCENA J M,MASSIEOTTE H B.Extraction of potassium and/or magnesium from selected soil minerals by piloderma[J].Geomicrobiology Journal,2003,20(2):99-111.
    [21]XUE Y H,ZHOU G Z,ZHANG G Z.The potassium feld-spar-fluorite-sulfuric acid system inside to resolve the studying of the potassium feldspar[J].Chemistry and Bioengineering,2004,2:25-27.
    [22]FOOTE H W,SCHOLES S R.The extraction of potash and alumina from feldspar[J].Journal of Industrial and Engineering Chemistry,1912,4:377.
    [23]ZHONG Y,GAO J,CHEN P,et al.Recovery of potassium from K-feldspar by thermal decomposition with flue gas desulfurization(FGD)gypsum and CaCO3:Analysis of mechanism and kinetics[J].Energy&Fuels,2017,31(1):699-707.
    [24]梁斌,上官文杰,岳海荣,等.一种利用机械活化从钾长石制取富钾溶液的方法:CN 104193424 A[P].2014.
    [25]任雪娇.石膏、钾长石热反应基础研究[D].昆明:昆明理工大学,2013.
    [26]YANG J,TAN X,MA H,et al.Alkali-hydrothermal synthesis of acicular tobermorite using natural mineral K-feldspar powder[J].Ferroelectrics,2015,481(1):57-63.
    [27]SU S,MA H,CHUAN X.Hydrothermal decomposition of K-feldspar in KOH-NaOH-H2O medium[J].Hydrometallurgy,2015,156:47-52.
    [28]张懿.亚熔盐清洁生产技术与资源高效利用[M].北京:化学工业出版社,2016.
    [29]LIU H,LIU B,LI L J,et al.Novel methods to extract vanadium from vanadium slag by liquid oxidation technology[J].Advanced Materials Research,2012,396/398:1786-1793.
    [30]CHEN G,WANG X H,DU H,et al.A clean and efficient leaching process for chromite ore[J].Minerals Engineering,2014,60:60-68.
    [31]SUN Z,ZHANG Y,ZHENG S L,et al.A new method of potassium chromate production from chromite and KOH-KNO3-H2O binary submolten salt system[J].AIChE,2009,55(10):2646-2656.
    [32]ZHENG S,ZHANG Y,LI Z,et al.Green metallurgical processing of chromite[J].Hydrometallurgy,2006,82(3/4):157-163.
    [33]ZHOU H M,ZHENG S L,ZHANG Y,et al.A kinetic study of the leaching of a low-grade niobium-tantalum ore by concentrated KOH solution[J].Hydrometallurgy,2005,80(3):170-178.
    [34]ZHENG S,ZHANG Y,LI Z,et al.Green metallurgical processing of chromite[J].Hydrometallurgy,2006,82(3):157-163.
    [35]LUO M J,LIU C L,JIANG Y F,et al.Green recovery of potassium and aluminum elements from alunite tailings using gradient leaching process[J].Journal of Cleaner Production,2017,168:1080-1090.
    [36]王涛,钟远,李海军,等.四苯硼钠-季铵盐质量滴定法分析钾含量研究[J].盐湖研究,2013(3):30-35.
    [37]中国地质大学化学分析室.硅酸盐岩石和矿物分析[M].北京:地质出版社,1990.
    [38]于建国,刘程琳,罗孟杰,等.一种由明矾石中获得有价元素的方法:CN 107032376A[P].2017-08.
    [39]凌进中.准确实用的硅酸盐岩石化学分析方法--GB/T14506.1-14506.28-93简介[J].中国标准导报,1996(3):23-24.
    [40]Crundwell F K.The mechanism of dissolution of minerals in acidic and alkaline solutions:PartⅠ.A new theory of nonoxidation dissolution[J].Hydrometallurgy,2014,149:252-264.
    [41]Crundwell F K.The mechanism of dissolution of minerals in acidic and alkaline solutions:PartⅡ.Application of a new theory to silicates,aluminosilicates and quartz[J].Hydrometallurgy,2014,149:265-275.
    [42]Crundwell F K.The mechanism of dissolution of minerals in acidic and alkaline solutions:PartⅢ.Application to oxide,hydroxide and sulfide minerals[J].Hydrometallurgy,2014,149:71-81.
    [43]DEAN J A.Lange’s Handbook of Chemistry[M].USA:Mcgraw-hill INC,1998:41-50.
    [44]WANG Y J,YU G Y,DENG M,et al.The use of thermodynamic analysis in assessing alkali contribution by alkaline minerals in concrete[J].Cement Concrete Composites,2008,30:353-359.
    [45]LUO M J,LIU C L,XUE J,et al.Leaching kinetics and mechanism of alunite from alunite tailings in highly concentrated KOH solution[J].Hydrometallurgy,2017,174:10-20.
    [46]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983:20-389.
    [47]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985:30-262.
    [48]张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37.
    [49]朱炳辰.化学反应工程[M].北京:化学工业出版社,1998:228.
    [50]BURKIN A R.The Chemistry of Hydrometallurgy[M].New Jersey:Van Nostrand,1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700