野生型水稻及其低硅突变体中植硅体和植硅体碳的含量与分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The contents and distributions of phytolith and phytolith-occluded carbon in different rice genotypes
  • 作者:张楠 ; 闫国超 ; 叶木军 ; 樊小平 ; 肖卓熙 ; 陈好 ; 彭苗 ; 梁永超
  • 英文作者:ZHANG Nan;YAN Guo-chao;YE Mu-jun;FAN Xiao-ping;XIAO Zhuo-xi;CHEN Hao;PENG Miao;LIANG Yong-chao;Key laboratory of Environment Remediation and Ecological Health, Ministry of Education/College of Environmental&Resource Sciences, Zhejiang University;
  • 关键词:水稻突变体 ; 植硅体 ; 植硅体碳 ; 植硅体碳储量
  • 英文关键词:rice mutant;;phytolith;;phytolith-occluded carbon;;phytolith-occluded carbon storage
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:教育部污染环境修复与生态健康重点实验室/浙江大学环境与资源学院;
  • 出版日期:2019-01-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.124
  • 基金:国家自然科学基金项目(31572191)资助
  • 语种:中文;
  • 页:ZWYF201901006
  • 页数:10
  • CN:01
  • ISSN:11-3996/S
  • 分类号:49-58
摘要
【目的】水稻是典型的富硅植物,植硅体沉积在水稻体内可封存有机碳。本文分析不同吸硅能力基因型水稻植硅体含量、形态、分布及其固碳特征,探究水稻植硅体固碳机理。【方法】盆栽试验在浙江大学玻璃房内进行。供试材料为水稻低硅突变体Lsi1和Lsi2及其野生型,所有施肥和管理措施一致。于成熟期,取水稻地上部茎、叶、鞘样品,常规方法测定硅、植硅体、植硅体碳含量。【结果】1)不同基因型水稻体内硅含量、植硅体含量、生物量干物质植硅体碳含量存在显著差异,均表现为突变体显著低于其野生型,大小依次为Lsi1野生型> Lsi2野生型> Lsi2突变体> Lsi1突变体,Lsi1和Lsi2突变体水稻植硅体碳含量显著高于其野生型,大小依次为Lsi1突变体> Lsi2突变体> Lsi2野生型> Lsi1野生型。2)野生型水稻硅与植硅体含量为鞘>叶>茎,而突变体水稻硅与植硅体含量为叶>鞘>茎,水稻叶片中的植硅体碳与生物量干物质植硅体碳含量最高,植硅体碳含量整体分布趋势为叶>茎>鞘,生物量干物质植硅体碳含量整体变化趋势为叶>鞘>茎。3)水稻植硅体含量与硅含量之间呈极显著正相关(P <0.01),高吸硅的水稻植硅体含量高,且形成的植硅体比表面积小,表明植硅体含量及其形态受其遗传特性的影响。植硅体含量与生物量干物质植硅体碳含量之间呈极显著正相关(P <0.01),植硅体碳含量与生物量干物质植硅体碳含量之间呈极显著负相关(P <0.01),表明生物量干物质植硅体碳含量除了受植硅体含量影响,还受植硅体所包裹的有机碳浓度影响。4) Lsi1及Lsi2野生型水稻生物量、植硅体储量、植硅体碳储量显著高于其突变体。【结论】具有高吸硅能力的野生型水稻与其突变体相比,生物量、硅、植硅体、生物量干物质植硅体碳含量增加,分布不同,虽然植硅体碳含量降低,但植硅体碳储量增加。Lsi1及Lsi2野生型水稻比低硅突变体水稻具有更高的固碳潜力。
        【Objectives】Rice is a well-known silicon(Si) accumulator. The phytolith enriched with Si in rice plant is able to occlude organic carbon. In order to explore the effect of Si-uptake ability on the content,distribution and carbon sequestration characteristic of phytoliths in rice, we selected four rice genotypes for investigation, different for illuminating the mechanism of phytolith carbon sequestration in rice.【Methods】A pot experiment was conducted in the glass room of Zhejiang University using two rice mutants and their wild types, i.e. Lsi1, a mutant defective in Si-uptake(low silicon rice 1) and Lsi2, a mutant defective in Si-uptake(low silicon rice 2). Si-uptake ability on the contents of SiO_2, phytolith and phytolith-occluded carbon(PhytOC) were measured in different aboveground organs(stem, leaf and sheath). All treatments were under the same fertilization and management conditions.【Results】1) Different rice genotypes had significant differences in contents of SiO_2, phytolith and PhytOC per gram of dry biomass with the following decreased order: Lsi1 wild type > Lsi2 wild type > Lsi2 mutant > Lsi1 mutant. The PhytOC contents were in the order of Lsi1 mutant > Lsi2 mutant >Lsi2 wild type > Lsi1 wild type. The contents of SiO_2, phytolith and PhytOC in Lsi1 and Lsi2 wild type were significantly higher than in its corresponding mutant, while the PhytOC contents showed an opposite trend. 2) The contents of SiO_2 and phytolith in the rice mutants were the highest in leaf, followed by sheath and stem, while in the rice wide types, their contents were the highest in sheath, followed by leaf and stem. The PhytOC contents and PhytOC per gram of dry biomass of rice were the highest in leaf of the four rice genotypes. The distribution trend of PhytOC content was in the order of leaf > stem > sheath, while that of PhytOC per gram of dry biomass of rice was in the order of leaf > sheath > stem. 3) There existed a positive correlation between phytolith contents and SiO_2 contents(P<0.01). Higher contents and smaller specific surface area of phytolith were observed in the rice genotypes with higher Si-uptake ability, indicating that both of the content and form of phytolith were affected by the genetic characteristics. A positive correlation was also found between phytolith contents and PhytOC(P<0.01), while negative correlation was observed between PhytOC contents and PhytOC(P<0.01), suggesting that the PhytOC per gram of dry biomass of rice was closely related to not only the phytolith content but the content of PhytOC. 4) The storages of phytolith and PhytOC, dry biomasses of the wild types of rice were significantly higher compared with their mutants.【Conclusions】Compared with the mutants, the wild types of rice has the higher contents of SiO_2 and phytolith, dry biomasses and PhytOC per gram of dry biomass of rice,although the distributions are different. The wild types has lower PhytOC contents, but higher PhytOC storages than the mutants. Therefore, Lsi1 and Lsi2 wild type rice with higher Si-uptake ability have higher carbon sequestration potential than their corresponding mutants.
引文
[1]苏京志,温敏,丁一汇,等.全球变暖趋缓研究进展[J].大气科学,2016, 40(6):1143-1153.Su J Z, Wen M, Ding Y H, et al. Hiatus of global warming:A Review[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(6):1143-1153.
    [2] Flato G, Marotzke J, Abiodun B, et al. Contribution to the fifth assessment report of the intergovernmental panel on climate change,summary for policymakers[A]. IPCC. Climate change 2013[C].Cambridge:Cambridge University Press, 2013, 5:741-866.
    [3] Tang J Y, Riley W J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[J]. Nature Climate Change,2015, 5(1):56-60.
    [4] Lackner K S. A guide to CO_2 sequestration[J]. Science, 2003,300(5626):1677-1678.
    [5] Piperno D R. Phytoliths:Tracking environmental change using lake sediments[M]. Dordrecht:Springer, 2002. 235-251.
    [6] Sangster A G, Hodson M J. Silicon and aluminium codeposition in the cell wall phytoliths of gymnosperm leaves[A]. Meunier J D, Colin F. Phytoliths-applications in earth science and history[M]. Lisse, The Netherlands:A.A. Balkema, 2001. 343-355.
    [7] Hodson M J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology[J]. Journal of Archaeological Science, 2016, 68:62-69.
    [8] Song Z L, McGrouther K, Wang H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158:19-30.
    [9] Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture:a review[J]. Agronomy for Sustainable Development, 2008, 28(1):33-46.
    [10] Parr J F, Sullivan L A. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry, 2005, 37(1):117-124.
    [11] Song Z L, Liu H Y, Li B L, et al. The production of phytolithoccluded carbon in China's forests:implications to biogeochemical carbon sequestration[J]. Global Change Biology, 2013, 19(9):2907-2915.
    [12] Song Z L, Liu H Y, Si Y, et al. The production of phytoliths in China's grasslands:implications to the biogeochemical sequestration of atmospheric CO_2[J]. Global Change Biology, 2012, 18(12):3647-3653.
    [13] Song Z L, Wang H L, Strong P J, et al. Phytolith carbon sequestration in China's croplands[J]. European Journal of Agronomy,2014, 53:10-15.
    [14] Hohn A, Sommer M, Kaczorek D, et al. Silicon fractions in histosols and gleysols of a temperate grassland site[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(3):409-418.
    [15] Li B L, Song Z L, Li Z M, et al. Phylogenetic variation of phytolith carbon sequestration in bamboos[J]. Scientific Reports,2014, 4:4710.
    [16] Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production[M]. Advances in Agronomy, 1996, 58:151-199.
    [17] Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8):392-397.
    [18] Tamai K, Ma J F. Characterization of silicon uptake by rice roots[J].New Phytologist, 2003, 158(3):431-436.
    [19] Mitani N,Ma J F, Iwashita T. Identification of the silicon form in xylem sap of rice(Oryza sativa L.)[J]. Plant and cell physiology,2005, 46(2):279-283.
    [20] Song A L, Li P, Fan F L, et al. The effect of silicon on photosynthesis and expression of its relevant genes in rice(Oryza sativa L.)under high-zinc stress[J]. PLoS One, 2014, 9(11):e113782.
    [21] Mohseni V G, Sabbagh S K. The ameliorative effects of silicon element on improvement of plants tolerance to diseases[J]. Scientia Agriculturae,2014, 8:80-85.
    [22]李自民,宋照亮,姜培坤.稻田生态系统中植硅体的产生与积累—以嘉兴稻田为例[J].生态学报,2013, 33(22):7197-7203.Li Z M, Song Z L, Jiang P K. The production and accumulation of phytoliths in rice ecosystems:a case study to Jiaxing Paddy Field[J].Acta Ecologica Sinica,2013, 33(22):7197-7203.
    [23] Song A L, Ning D F, Fan F L, et al. The potential for carbon biosequestration in China's paddy rice(Oryza saliva L.)as impacted by slag-based silicate fertilizer[J]. Scientific Reports, 2015, 5:17354.
    [24]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2002.Bao S D. Soil and agrochemistry analysis[M]. Beijing:Chinese Agriculture Press, 2002.
    [25]鲁如坤.土壤农化分析[M].北京:中国农业科技出版社,2000.Lu R K. Soil agricultural chemical analysis method[M]. Beijing:China Agricultural Science and Technology Press. 2000.
    [26] Pan G X, Li L Q, Zhang X H, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands[J].Advances in Earth Science, 2003, 18(4):609-618.
    [27] Dai W M, Zhang K Q, Duan B W, et al. Rapid determination of silicon content in rice[J]. Rice Science,2005, 12(2):145-147.
    [28] Parr J F, Dolic V, Lancaster G, et al. A microwave digestion method for the extraction of phytoliths from herbarium specimens[J]. Review of Palaeobotany and Palynology, 2001, 116(3-1):203-212.
    [29] Walkley A, Black I A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method[J]. Soil Science,1934, 37(1):29-38.
    [30]杨杰,李永夫,黄张婷,等.碱溶分光光度法测定植硅体碳含量[J].分析化学,2014, 42(9):1389-1390.Yang J, Li Y F, Huang Z T, et al. Determination of phytolithoccluded carbon content using alkali dissolutionspectrophotometry[J]. Chinese Journal of Analytical Chemistry,2014, 42(9):1389-1390.
    [31]王丹,王奥博,龙高飞,等.湿地生态系统中植硅体与植硅体碳的研究进展[J].生态学杂志,2017, 36(12):3602-3609.Wang D, Wang A B, Long G F, et al. Research advances of phytolith and phytolith-occluded-carbon in wetland ecosystems[J]. Chinese Journal of Ecology,2017, 36(12):3602-3609.
    [32]孟建,崔栗,韩江伟,等.植物硅素营养研究进展[J].安徽农学通报,2013, 19(17):26-28.Meng J, Cui L, Han J W, et al. Research Progress of Silicon Nutrition in Plants[J]. Anhui Agricultural Science Bulletin, 2013, 19(17):26-28.
    [33] Swain R, Rout G R. Silicon in agriculture[J]. Sustainable Agriculture Reviews,2017, 8:233-260.
    [34] Ma J F, Tamai K, Yamaji N, et al. A silicon transporter in rice[J].Nature, 2006, 440(7084):688-691.
    [35] Ma J F, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice[J]. Nature,2007, 448(7150):209-212.
    [36]李莉,徐慧妮,李昆志.水稻硅转运蛋白研究进展[J].生物技术通报,2010,(2):11-13.Li L, Xu H N, Li K Z. Advances in research of silicon transporters in rice[J]. Biotechnology Bulletin, 2010,(2):11-13.
    [37]刘俊霞,黄张婷,姜培坤,等.母岩与竹龄对毛竹竹叶中硅和植硅体碳含量的影响[J].应用生态学报,2017, 28(9):2917-2922.Liu J X, Huang Z T, Jiang P K, et al. Effects of parent rock and bamboo age on silicon and phytolith-occluded carbon in the leaves of Moso bamboo[J]. Chinese Journal of Applied Ecology, 2017, 28(9):2917-2922.
    [38]杨杰,项婷婷,姜培坤,等.绿竹生态系统植硅体碳积累与分布特征[J].浙江农林大学学报,2016, 33(2):225-231.Yang J, Xiang T T, Jiang P K, et al. Phytolith-occluded organic carbon accumulation and distribution in a Dendrocalamopsis oldhami bamboo stand ecosystem[J]. Journal of Zhejiang A&F University,2016, 33(2):225-231.
    [39] Li Z M, Song Z L. Comelis J T Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon[J]. Frontiers in Plant Science, 2014, 5:529.
    [40] Li Z L, Song Z L, Jiang P K. Biogeochemical sequestration of carbon within phytoliths of wetland[J]. Chinese Science Bulletin, 2013,58(20):2480-2487.
    [41]尹帅,姜培坤,孟赐福,等.绿竹和麻竹地上部植硅体碳封存潜力[J].生态学报,2017, 37(20):6827-6835.Yin S, Jiang P K, Meng C F, et al. Comparison of PhytOC sequestration rates in aboveground part of Dendrocalamopsis oldhami(Munro)Keng f. and Dendrocalamus latiflorus Munro[J].Acta Ecologica Sinica, 2017, 37(20):6827-6835.
    [42] Li Z M, Song Z L, Parr J F, et al. Occluded C in rice phytoliths:implications to biogeochemical carbon sequestration[J]. Plant and Soil, 2013, 370(1-2):615-623.
    [43]龚金龙,张洪程,龙厚元,等.水稻中硅的营养功能及生理机制的研究进展[J].植物生理学报,2012, 48(1):1-10.Gong J L, Zhang H C, Long H Y, et al. Progress in research of nutrition functions and physiological mechanisms of silicon in rice[J].Plant Physiology Journal,2012, 48(1):1-10.
    [44] Li Z M, Song Z L, Li B L. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China[J].Applied Geochemistry, 2013, 37:117-124.
    [45]王永吉,吕厚远.植物硅酸体的研究及应用[M].北京:海洋出版社,1993.Wang Y J, Lv H Y. Phytolith study and its application[M]. Beijing:China Ocean Press, 1993.
    [46] Parr J, Sullivan L, Chen B, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biology,2010, 16(10):2661-2667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700