东北春大豆田间黄蓟马空间分布型及抽样技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial distribution pattern and sampling technique of Thrips flavus Schrank in spring soybean field in northeast China
  • 作者:刘延超 ; 高宇 ; 李颖姣 ; 潘新龙 ; 崔娟 ; 徐伟 ; 史树森
  • 英文作者:LIU Yan-chao;GAO Yu;LI Ying-jiao;PAN Xin-long;CUI Juan;XU Wei;SHI Shu-sen;Innovation Center of Soybean Region Technology,College of Agriculture,Jilin Agricultural University;Tonghua City,Jilin Province Meteorological Bureau;
  • 关键词:黄蓟马 ; 大豆生育期 ; 空间分布型 ; 抽样技术
  • 英文关键词:Thrips flavus;;soybean growth period;;spatial distribution pattern;;sampling technique
  • 中文刊名:ZGYW
  • 英文刊名:Chinese Journal of Oil Crop Sciences
  • 机构:吉林农业大学农学院/大豆区域技术创新中心;吉林省通化市气象局;
  • 出版日期:2018-04-15
  • 出版单位:中国油料作物学报
  • 年:2018
  • 期:v.40;No.168
  • 基金:现代农业技术体系建设项目“国家大豆产业技术体系建设”(CARS-04);; 吉林省科技厅重点科技研发项目(2018201015NY)
  • 语种:中文;
  • 页:ZGYW201802013
  • 页数:7
  • CN:02
  • ISSN:42-1429/S
  • 分类号:110-115+142
摘要
为明确大豆田黄蓟马的空间分布型及理论抽样数,指导田间取样,采用6种聚集度指标、Iwao回归分析法和Taylor幂法则分析了黄蓟马成虫、若虫和整个种群(成虫和若虫)在大豆田间的空间分布型,并且进行空间分布型适合度卡方检验,确定所属空间分布型,对聚集因素作出分析,根据Iwao的理论抽样数模型确定最适理论抽样数。结果表明,黄蓟马成虫、若虫和整个种群在大豆不同生育期的空间分布型均为聚集分布,Iwao回归分析法显示黄蓟马个体间相互吸引,分布的基本成分是个体群。Taylor幂法则分析表明,黄蓟马成虫、若虫和整个种群聚集度依赖密度,且随着平均密度的升高聚集程度越强。卡方检验的结果也为聚集分布。黄蓟马的种群集数λ均大于2,说明黄蓟马种群的聚集原因可能由其生活习性或其本身的聚集行为及环境因素共同作用所致。黄蓟马成虫的理论抽样方程N=(2.219 9/+0.117 6)/D~2,若虫的理论抽样方程N=(1.554 9/+0.072 8)/D~2,黄蓟马整个种群的理论抽样方程N=(1.928 4/+0.003 5)/D~2。本文结果为黄蓟马田间取样提供理论依据。
        Thrips flavus is a kind of important pest on soybean plants in some areas in China in recent years. In this paper,the spatial distribution patterns of sugarcane worsening seedlings were analyzed by using six kinds of aggregation index method,Iwao regression analysis and Taylor power law to analyze the spatial distribution patterns of adults,nymphs and complex population( adults and nymphs) in the field of soybean. The spatial distribution type fidelity chi-square test was used to determine the spatial distribution type,and the aggregation factors were analyzed. According to Iwao's theoretical sampling number model,the optimal number of sampling samples of the adults and nymphs of soybean T. flavus were determined. The results showed that the spatial distribution patterns of adults and nymphs and complex population in soybean were aggregated in different growth stages of soybean,and Iwao's regression analysis showed that T. flavus were attracted to each other,and the basic components of the distribution were individual aggregation distribution. The Taylor law reflected the density of adults,nymphs and complex population dependent aggregation degree,and the degree of aggregation increased with the increase of average density. The results of chi-square test were also aggregated. The population number of the adults and nymphs of T.flavus were greater than 2,indicating that the aggregation of T. flavus population might be due to the synergistic effect of the population habitat or its own agglomeration behavior and environmental factors. The theoretical sampling equation of T. adults was N =( 2. 219 9/+ 0. 117 6)/D~2. And the theoretical sampling equation of the T. flavus nymphs was N =( 1. 554 9/+ 0. 072 8)/D~2. The theoretical sampling equation for the whole population of T. flavus was N =( 1. 928 4/+ 0. 003 5)/D~2. This paper provided a theoretical basis for field sampling of T.flavus on soybean.
引文
[1]王伟,张仁福,刘海洋,等.新疆棉田牧草盲蝽的空间分布规律[J].植物保护学报,2016,43(6):972-978.
    [2]峗薇,杨茂发,廖启荣,等.两种育秧方式下稻水象甲幼虫的空间分布型及其抽样技术[J].植物保护学报,2013,40(2):128-132.
    [3]Gómez-Murillo L,Cuartas-Hernández S E.Patterns of diversity of flower-visitor assemblages to the understory Araceae in a tropical mountain forest in Colombia[J].Journal of Insect Conservation.2016.20(6):1 069-1 085.
    [4]谢永辉,张宏瑞,刘佳,等.传毒蓟马种类研究进展(缨翅目,蓟马科)[J].应用昆虫学报,2013,50(6):1 726-1 736.
    [5]高宇,刘延超,史树森,等.我国大豆田蓟马研究现状[J].作物杂志,2017(1):8-13.
    [6]高宇,史树森,崔娟,等.三种颜色色板对大豆田蓟马的诱集效果[J].中国油料作物学报,2016,38(6):838-842.
    [7]Silva R,Walter G H,Wilson L J,et al.Effect of the postfeeding interval on olfactory responses of thrips to herbivore-induced cotton plants[J].Insect Science,2016,23(6):881-892.
    [8]Farkas P,Bagi N,SzabóA,et al.Biological control of thrips pests(Thysanoptera:Thripidae)in a commercial greenhouse in Hungary[J].Polish Journal of Entomology,2016,85(4):437-451.
    [9]Zhu L,Wang Z H,Gong Y J,et al.Effect of temperature on the development of Echinothrips americanus Morgan(Thysanoptera:Thripidae)with special reference to the number of generations[J].Journal of Asia-Pacific Entomology,2017,20(4):1 197-1 203.
    [10]Otieno J A,Pallmann P,Poehling H M.Additive and synergistic interactions amongst Orius laevigatus(Heteroptera:Anthocoridae),entomopathogens and azadirachtin for controlling western flower thrips(Thysanoptera:Thripidae)[J].Bio Control,2016,62(1):85-95.
    [11]Riley D G,Pappu H R.Tactics for management of thrips(Thysanoptera:Thripidae)and tomato spotted wilt virus in tomato[J].Journal of Economic Entomology,2016,97(5):1 648-1 658.
    [12]Lloyd M.Mean crowding[J].Journal of Animal Ecology,1967,36:1-30.
    [13]丁岩钦.昆虫数学生态学[M].北京:科学出版社,1994.
    [14]徐汝梅,成新跃.昆虫种群生态学―基础与前沿[M].北京:科学出版社,2005.
    [15]洪波,张云慧,李超,等.马铃薯甲虫空间分布型及序贯抽样[J].植物保护学报,2010,37(3):206-210.
    [16]刘磊,梁昌聪,曾迪,等.香蕉枯萎病田间分布型及病原菌在植株上的分布[J].生态学报,2015,35(14):4 742-4 753.
    [17]朱惠英,沈平,吴建华,等.斑膜合垫盲蝽若虫在国槐上的空间分布型及抽样技术[J].生态学报,2014,34(4):832-836.
    [18]高贺,韩宪琪,冯安荣,等.不同抗性小麦品种上麦红吸浆虫幼虫的空间分布型与理论抽样数[J].应用昆虫学报,2016,53(5):1 138-1 145.
    [19]赵阳,朱景乐,李芳东,等.杜仲梦妮夜蛾幼虫的空间分布型及抽样技术[J].环境昆虫学报,2014,36(4):629-634.
    [20]范咏梅,童晓立,高良举,等.普通大蓟马在海南豇豆上的空间分布型[J].环境昆虫学报,2013,35(6):737-743.
    [21]蒋兴川,李志华,曹志勇,等.蔬菜花期蓟马的种群动态与空间分布研究[J].应用昆虫学报,2013,50(6):1 628-1 636.
    [22]姜彩鸽,王国珍,韩江霞,等.设施葡萄上蓟马种群消长规律和空间分布[J].植物保护,2014,40(2):135-140.
    [23]Sarfraz R M,Dosdall L M,Blake A J,et al.Leaf nutrient levels and the spatio-temporal distributions of Plutella xylostella and its larval parasitoids Diadegma insulare and Microplitis plutellae in canola[J].Bio Control,2010,55(2):229-244.
    [24]刘健,赵奎军.中国东北地区大豆主要食叶害虫空间动态分析[J].中国油料作物学报,2012,34(1):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700