老年轻中度髋关节骨性关节炎患者行走时冠状面运动学变化对稳定性和跌倒风险的影响
详细信息    查看全文 | 推荐本文 |
  • 作者:林小斌 ; 吴文华 ; 林晓聪 ; 戴章生 ; 叶晖 ; 巫海鹏
  • 关键词:髋关节骨性关节炎 ; 跌倒风险 ; 步态分析 ; 冠状面稳定性
  • 中文刊名:ZGKF
  • 英文刊名:Chinese Journal of Rehabilitation Medicine
  • 机构:福建医科大学附属第二医院骨科;
  • 出版日期:2019-06-15
  • 出版单位:中国康复医学杂志
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(81272161);; 福建省自然科学基金(2017J01277);; 泉州市高层次人才创新创业项目(2017Z010);; 福建省卫计委中青年骨干科研基金(2016-ZQN-52);; 福建省教育厅中青年教师科研基金(JAT160217)
  • 语种:中文;
  • 页:ZGKF201906015
  • 页数:6
  • CN:06
  • ISSN:11-2540/R
  • 分类号:73-78
摘要
目的:研究老年轻中度髋关节骨性关节炎(HOA)患者在行走时冠状面运动学变化对稳定性和跌倒风险所产生的影响。方法:研究对象为12例有跌倒倾向的轻中度HOA患者、12例匹配的健康老年人及12例健康年轻人,评估其过去1年跌倒次数、髋外展肌力、跌倒恐惧性、髋关节功能Harris评分(HHS)和疼痛情况。受试者在步行仪上以逐渐增加的速度行走。测量反映步态稳定性的参数,同时用回归分析的方法分析冠状面重心运动和足部位置之间的关系。分析组间和组内的影响作用和交互作用,并将所有变量和跌倒次数进行回归相关性分析。结果:相对于健康的老年人和年轻人HOA患者跌倒次数更多,走得更快,步宽更大,患侧支撑相更短,患侧髋外展肌肌力更弱,重心的冠状面运动峰速更大,特别是朝向健侧的更大。HOA患者的静态稳定界限更大,但各组间的动态稳定界限没有区别。重心冠状面的位置和加速度能预测随后的步宽。朝向健侧的重心冠状面峰速和跌倒次数的公共方差为55%。结论:加快和加宽步伐能增加稳定性,患侧支撑相的缩短和/或患侧髋外展肌的无力会加快朝向健侧的躯干冠状面运动,从而导致跌倒的发生。
        
引文
[1] Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis:estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7):1323—1330.
    [2] Edwards MH, van der Pas S, Denkinger MD, et al. Relationships between physical performance and knee and hip osteoarthritis:findings from the European Project on Osteoarthritis(EPOSA)[J]. Age Ageing, 2014, 43(6):806—813.
    [3] Sousa LM, Marques-Vieira CM, Caldevilla MN, et al. Risk for falls among community-dwelling older people:systematic literature review[J]. Rev Gaucha Enferm, 2017, 37(4):e55030.
    [4] Arnold CM, Gyurcsik NC. Risk factors for falls in older adults with lower extremity arthritis:a conceptual framework of current knowledge and future directions[J]. Physiother Can, 2012, 64(3):302—314.
    [5] Robinovitch SN, Feldman F, Yang Y, et al. Video capture of the circumstances of falls in elderly people residing in long-term care:an observational study[J]. Lancet, 2013, 381(9860):47—54.
    [6] Bauby CE, Kuo AD. Active control of lateral balance in human walking[J]. J Biomech, 2000, 33(11):1433—1440.
    [7] Pandy MG, Lin YC, Kim HJ. Muscle coordination of mediolateral balance in normal walking[J]. J Biomech, 2010, 43(11):2055—2064.
    [8] Hof AL, Gazendam MG, Sinke WE. The condition for dynamic stability[J]. J Biomech, 2005, 38(1):1—8.
    [9] Hof AL. The‘extrapolated center of mass'concept suggests a simple control of balance in walking[J]. Hum Mov Sci,2008, 27(1):112—125.
    [10] Constantinou M, Barrett R, Brown M, et al. Spatial-temporal gait characteristics in individuals with hip osteoarthritis:a systematic literature review and meta-analysis[J]. J Orthop Sports Phys Ther, 2014, 44(4):291—303.
    [11] Hak L, Houdijk H, Steenbrink F, et al. Speeding up or slowing down?:Gait adaptations to preserve gait stability in response to balance perturbations[J]. Gait Posture, 2012,36(2):260—264.
    [12] Reininga IH, Stevens M, Wagenmakers R, et al. Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis[J]. J Neuroeng Rehabil, 2012, 9(1):3.
    [13] Thurston AJ. Spinal and pelvic kinematics in osteoarthrosis of the hip joint[J]. Spine, 1985, 10(5):467—471.
    [14] Hurt CP, Rosenblatt N, Crenshaw JR, et al. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults[J]. Gait Posture, 2010, 31(4):461—464.
    [15] Bruijn SM, Meijer OG, Beek PJ, et al. Assessing the stability of human locomotion:a review of current measures[J]. J R Soc Interface, 2013, 10(83):20120999.
    [16]林小斌,吴文华,林晓聪,等.老年人行走时躯干冠状面运动变化对稳定性的影响及其与跌倒的关联性[J].中国康复医学杂志,2016,31(8):889—894.
    [17] Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis[J]. Ann Rheum Dis, 1957, 16(4):494—502.
    [18] Fabre JM, Ellis R, Kosma M, et al. Falls risk factors and a compendium of falls risk screening instruments[J]. J Geriatr Phys Ther, 2010, 33(4):184—197.
    [19] Delbaere K, Close JC, Mikolaizak AS, et al. The Falls Efficacy Scale International(FES-I). A comprehensive longitudinal validation study[J]. Age Ageing, 2010, 39(2):210—216.
    [20] Kwan MM, Tsang WW, Close JC, et al. Development and validation of a Chinese version of the Falls Efficacy Scale International[J]. Arch Gerontol Geriatr, 2013, 56(1):169—174.
    [21] Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures:treatment by mold arthroplasty.An end-result study using a new method of result evaluation[J]. J Bone Joint Surg Am, 1969, 51(4):737—755.
    [22] Bohannon RW. Intertester reliability of hand-held dynamometry:a concise summary of published research[J]. Percept Mot Skills, 1999, 88(3 Pt 1):899—902.
    [23] Leetun DT, Ireland ML, Willson JD, et al. Core stability measures as risk factors for lower extremity injury in athletes[J]. Med Sci Sports Exerc, 2004, 36(6):926—934.
    [24] Pijnappels M, Bobbert MF, van Die?n JH. Changes in walking pattern caused by the possibility of a tripping reaction[J]. Gait Posture, 2001, 14(1):11—18.
    [25] Toebes MJ, Hoozemans MJ, Furrer R, et al. Local dynamic stability and variability of gait are associated with fall history in elderly subjects[J]. Gait Posture, 2012, 36(3):527—531.
    [26] Kiss RM. Effect of walking speed and severity of hip osteoarthritis on gait variability[J]. J Electromyogr Kinesiol,2010, 20(6):1044—1051.
    [27] England SA, Granata KP. The influence of gait speed on local dynamic stability of walking[J]. Gait Posture, 2007, 25(2):172—178.
    [28] Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking[J]. Chaos,2000, 10(4):848—863.
    [29] van Schooten KS, Rispens SM, Pijnappels M, et al. Assessing gait stability:the influence of state space reconstruction on inter-and intra-day reliability of local dynamic stability during over-ground walking[J]. J Biomech, 2013, 46(1):137—141.
    [30] Stenum J, Bruijn SM, Jensen BR. The effect of walking speed on local dynamic stability is sensitive to calculation methods[J]. J Biomech, 2014, 47(15):3776—3779.
    [31] Fallah-Yakhdani HR, Abbasi-Bafghi H, Meijer OG, et al.Determinants of co-contraction during walking before and after arthroplasty for knee osteoarthritis[J]. Clin Biomech,2012, 27(5):485—494.
    [32] Hof AL, van Bockel RM, Schoppen T, et al. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees[J]. Gait Posture, 2007, 25(2):250—258.
    [33] Yang F, Espy D, Pai YC. Feasible stability region in the frontal plane during human gait[J]. Ann Biomed Eng,2009, 37(12):2606—2614.
    [34] Aberg AC, Frykberg GE, Halvorsen K. Medio-lateral stability of sit-to-walk performance in older individuals with and without fear of falling[J]. Gait Posture, 2010, 31(4):438—443.
    [35] McAndrew Young PM, Dingwell JB. Voluntary changes in step width and step length during human walking affect dynamic margins of stability[J]. Gait Posture, 2012, 36(2):219—224.
    [36] Bruijn SM, Van Impe A, Duysens J, et al. White matter microstructural organization and gait stability in older adults[J]. Front Aging Neurosci, 2014, 6(1):104.
    [37] Mademli L, Arampatzis A. Lower safety factor for old adults during walking at preferred velocity[J]. Age, 2014, 36(3):9639.
    [38] Weiss A, Herman T, Giladi N, et al. Objective assessment of fall risk in Parkinson's disease using a body-fixed sensor worn for 3 days[J]. PLoS One, 2014, 9(5):e96675.
    [39] van Schooten KS, Pijnappels M, Rispens SM, et al. Ambulatory fall-risk assessment:amount and quality of daily-life gait predict falls in older adults[J]. J Gerontol A Biol Sci Med Sci, 2015, 70(5):608—615.
    [40] Dingwell JB, Cusumano JP, Cavanagh PR, et al. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking[J]. J Biomech Eng,2001, 123(1):27—32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700