四旋翼PID-ADRC控制器研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Quadrotor PID-ADRC Controller
  • 作者:胡文华 ; 张海星 ; 杨阳
  • 英文作者:HU Wen-hua;ZHANG Hai-xing;YANG Yang;School of Electrical and Automation Engineering,East China Jiaotong University;
  • 关键词:比例-积分-微分控制器 ; 自抗扰控制器 ; 四旋翼飞行器 ; 姿态解耦
  • 英文关键词:PID controller;;ADRC controller;;Quadrotor;;Attitude decoupling
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:华东交通大学电气与自动化工程学院;
  • 出版日期:2019-01-15
  • 出版单位:计算机仿真
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51567009)
  • 语种:中文;
  • 页:JSJZ201901009
  • 页数:6
  • CN:01
  • ISSN:11-3724/TP
  • 分类号:46-51
摘要
四旋翼飞行器的姿态角之间存在强耦合,传统的PID控制器对于存在耦合的四旋翼飞行器控制效果较差。针对这一情况,设计了一种PID-ADRC控制器。文中首先由牛顿-欧拉方程建立四旋翼的数学模型;再根据自抗扰控制器(ADRC)的理论设计了内环的姿态角控制器和高度控制器,姿态角控制器中的状态观测器(ESO)将姿态角之间的耦合视为外部扰动而进行估计从而实现了姿态角之间的解耦,内环控制器是整个控制器的核心和基础;再在俯仰通道和横滚通道分别加上外环PID控制器,最终实现了四旋翼飞行器的飞行运动控制。在SIMULINK当中搭建仿真模型,仿真结果表明,PID-ADRC控制器可以良好的实现四旋翼的姿态解耦和轨迹跟踪控制,而且具有调节时间短,超调量小,鲁棒性强等优点。
        There is a coupling between the attitude angles of quadrotor. Conventional PID controller has a less effective control on a quadrotor with coupling. For this situation,the PID-ADRC controller was designed. In this paper,the mathematical model of quadrotor was established based on Newton-Euler equation; inner attitude controller and height controller were designed based on the theory of ADRC,and the ESO of attitude controller estimated the coupling between the attitude angles as an external disturbance,which completed the decoupling between the attitude angles. The inner controller was the core and foundation of the PID-ADRC controller. Then outer PID controllers was added to pitch channel and roll channel in order to complete the flight control of the quadrotor. Building up simulation structures through SIMULINK,the simulation results show that the PID-ADRC controller has good effect for attitude decoupling control and trajectory tracking control,the adjusting time is short,the overshoot is small,and the robustness is strong.
引文
[1] M N Duc,T N Trong,S X Yang. The quadrotor MAV system using PID control[C]. IEEE International Conference on Mechatronics and Automation,IEEE,2015:506-510.
    [2] D Lee,H J Kim,S Sastry. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[J]. International Journal of Control,Automation and Systems,2009,7(3):419-428.
    [3] Abdellah Mokhtari,et al. Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle[J]. Advanced Robotics,2006,20(1):71-91.
    [4] H Ba?ak,E Prempain. Low order controllers for a quadrotor UAV[C]. Ukacc International Conference on Control,2014:127-132.
    [5] T Madani,A Benallegue. Backstepping Control for a Quadrotor Helicopter[C]. IEEE/rsj International Conference on Intelligent Robots and Systems. IEEE,2006:3255-3260.
    [6]韩京清.从PID技术到”自抗扰控制技术”[J].控制工程,2002,9(3):13-18.
    [7]杨晟萱.四旋翼飞行器自抗扰控制方法研究[D].大连理工大学,2014.
    [8]王俊生,等.基于ADRC的小型四旋翼无人直升机控制方法研究[J].弹箭与制导学报,2008,28(3):31-34.
    [9] S Khatoon,et al. Dynamic modeling and stabilization of quadrotor using PID controller[C]. International Conference on Advances in Computing,Communications and Informatics. IEEE,2014:746-750.
    [10] C Wang,et al. Design of PID and ADRC based quadrotor helicopter control system[C]. Chinese Control and Decision Conference,2016:5860-5865.
    [11]杨立本,章卫国,黄得刚.基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J].北京航空航天大学学报,2015,41(6):1026-1033.
    [12]张婷.基于ADRC的四旋翼飞行控制器设计[D].东北大学,2013.
    [13]刘一莎,杨晟萱,王伟.四旋翼飞行器的自抗扰飞行控制方法[J].控制理论与应用,2015,32(10):1351-1360.
    [14]李毅,等.离散型自抗扰控制器在四旋翼飞行姿态控制中的应用[J].控制理论与应用,2015,32(11):1470-1477.
    [15]高强,刘俊杰,刘文杰.四旋翼飞行器姿态的自抗扰控制研究[J].计算机仿真,2016,33(12):38-41.
    [16]钟海鑫,等.基于ADRC的四旋翼无人机姿态控制研究[J].江西师范大学学报(自然科学版),2017,(1):67-72.
    [17]聂博文.微小型四旋翼无人直升机建模及控制方法研究[D].国防科学技术大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700