分布式水文模型DHSVM在西北高寒山区流域的适用性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On applicability of a fully distributed hydrological model in the cold and alpine watershed of Northwest China
  • 作者:赵奕 ; 南卓铜 ; 李祥飞 ; 徐毅 ; 张凌
  • 英文作者:ZHAO Yi;NAN Zhuotong;LI Xiangfei;XU Yi;ZHANG Ling;Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science;
  • 关键词:DHSVM模型 ; 高寒山区 ; 八宝河流域 ; 参数敏感性分析 ; 径流模拟
  • 英文关键词:DHSVM;;cold and alpine region;;the Babao River basin;;sensitivity analysis;;streamflow simulation
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:南京师范大学虚拟地理环境教育部重点实验室;中国科学院西北生态环境资源研究院;
  • 出版日期:2019-02-22 14:40
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划(2017YFA0603603);; 国家自然科学基金(41671055);; 江苏高校自然科学研究项目(17KJA170003);; 南京师范大学“青蓝工程”资助
  • 语种:中文;
  • 页:BCDT201901016
  • 页数:11
  • CN:01
  • ISSN:62-1072/P
  • 分类号:153-163
摘要
分布式水文-土壤-植被模型(Distributed Hydrology Soil Vegetation Model, DHSVM)是基于栅格离散的分布式水文模型,对地表水热循环的各个过程能进行很精细地刻画,被广泛应用于世界各地很多类型的流域的高时空分辨率的水文模拟,然而它在高寒山区的适用性并不清楚。基于300 m数字高程模型,应用DHSVM模型对典型的高寒山区流域八宝河流域2001-2009年的水文过程展开模拟,并采用流域出口祁连站的水文实测数据对模型进行了精度评价。参数敏感性分析表明,土壤横向导水率、田间持水量和植被反照率等是该区域主要的敏感性参数。模型默认参数会高估高寒山区流域的潜在蒸散发量,导致夏季径流量远小于观测值。通过参数率定,模型校准期(2001-2004)的模拟日径流和月径流Nash效率系数分别达到0.72和0.87;而模型验证期(2005-2009)分别为0.60和0.74。结果表明, DHSVM模型基本具备了模拟高寒山区流域降水-径流过程的能力。然而,由于DHSVM模型缺少对高寒山区流域土壤的冻融过程的刻画,春季径流的模拟精度明显受到影响,需要在将来重点改进。
        Distributed-Hydrology-Soil-Vegetation-Model(DHSVM) is a grid-based distributed hydrological model and has been widely used to simulate hydrological processes at high spatiotemporal resolution across the world owing to its particular calculation of surface water and heat balance. However, its applicability in cold and alpine regions remains unclear. This paper employed DHSVM to simulate hydrological processes during the period of 2001 to 2009 at a 300 meters and 3 hours modeling resolutions in the Babao River basin, a representative mountainous river basin located within the Qilian Mountains in the cold region of Northwest China. The applicability was thus validated with observations at the basin outlet. Parametric sensitivity analysis shows that lateral conductivity, field capacity, leaf area index and albedo are some most sensitive parameters. The default model parameters lead to overestimation of potential evaporation, and consequent underestimation of streamflow simulation in summers. Using calibrated parameters, the model can achieve good simulation with Nash-Sutcliffe efficiency coefficients of 0.72 and 0.87 in the calibration period(2001-2004), and 0.60 and 0.74 in the validation period(2005-2009) for daily and monthly simulations, respectively. This study concludes that DHSVM is generally capable for simulating hydrological processes at high spatial and temporal resolutions in cold and alpine regions, although it is insufficient in representing freezing and thawing processes occurred in soil, resulting in lower accuracy of streamflow simulation in springs, which should be addressed in future when modelling in those areas.
引文
[1] Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. 1994, 30(6): 1665-1679.
    [2] Cuartas L A, Tomasella J, Nobre A D, et al. Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: model evaluation and advances in calibration using the new HAND terrain model[J]. Journal of Hydrology, 2012, 462(5): 15-27.
    [3] Safeeq M, Fares A. Hydrologic effect of groundwater development in a small mountainous tropical watershed[J]. Journal of Hydrology, 2012, 428(13): 51-67.
    [4] Alvarenga L A, de Mello C R, Colombo A, et al. Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology-Soil-Vegetation Model[J]. CATENA, 2016, 143: 7-17.
    [5] Lan C, Giambelluca T W, Ziegler A D, et al. Use of the distributed hydrology soil vegetation model to study road effects on hydrological processes in Pang Khum Experimental Watershed, northern Thailand[J]. Forest Ecology and Management, 2006, 224(1/2): 81-94.
    [6] Kang Lili, Wang Shourong, Gu Junqiang. The simulation test of the distributed hydrological model DHSVM on the runoff change of Lanjiang River basin[J]. Journal of Tropical Meteorology, 2008, 24(2): 176-182. [康丽莉, 王守荣, 顾骏强. 分布式水文模型DHSVM对兰江流域径流变化的模拟试验[J]. 热带气象学报, 2008, 24(2): 176-182.]
    [7] Shi Chao, Xia Gong, Zhang Xingnan, et al. Hydrological simulation of Pingtong River basin based on distributed hydrological model DHSVM[J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(4): 19-23. [石超, 龚霞, 张行南, 等. 基于分布式水文模型DHSVM的平通河流域水文模拟[J]. 三峡大学学报(自然科学版), 2014, 36(4): 19-23.]
    [8] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes[J]. Science in China: Series D Earth Sciences, 1999, 29(S1): 52-63.
    [9] Chen Rensheng, Kang Ersi, Yang Jianping, et al. Application of TOPMODEL to simulate runoff from Heihe Mainstream Mountainous Basin[J]. Journal of Desert Research, 2003, 23(4): 94-100. [陈仁升, 康尔泗, 杨建平, 等. TOPMODEL模型在黑河干流出山径流模拟中的应用[J]. 中国沙漠, 2003, 23(4): 94-100.]
    [10] Wang Jian, Li Shuo. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in northwestern China[J]. Science in China: Series D Earth Sciences, 2006, 49(8): 881-888.
    [1[1] Huang Qinghua, Zhang Wanchang. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of Heihe River Basin, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(2): 22-26. [黄清华, 张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用[J]. 南京林业大学学报(自然科学版), 2004, 28(2): 22-26.]
    [12] Zhang Lanhui, Jin Xin, He Chansheng, et al. Comparison of SWAT and DLBRM for hydrological modeling of a mountainous watershed in arid northwest China[J]. Journal of Hydrologic Engineering, 2016, 21(5): 4016007.
    [13] Yue Jiajia, Pang Bo, Xu Zongxue. Estimating parameters of the variable infiltration capacity model using ant colony optimization[J]. Water Science and Technology, 2016, 74(4): 985-993.
    [14] Xia Jun, Wang Gangsheng, Tan Ge, et al. Development of distributed time-variant gain model for nonlinear hydrological systems[J]. Science in China: Series D Earth Sciences, 2005, 48(6): 713-723.
    [15] Nan Zhuotong, Shu Lele, Zhao Yanbo, et al. Integrated modeling environment and a preliminary application on the Heihe River Basin, China[J]. Science China Technological Sciences, 2011, 54(8): 2145-2156.
    [16] Feng Qi, Zhang Yanwu, Si Jianhua, et al. Simulative experiment on energy transfer in APAC system at lower reaches of Heihe River[J]. Journal of Desert Research, 2008, 28(6): 1145-1150. [冯起, 张艳武, 司建华, 等. 黑河下游典型植被下垫面与大气间能量传输模拟研究[J]. 中国沙漠, 2008, 28(6): 1145-1150.]
    [17] Zhao Yanbo, Nan Zhuotong, Chen Hao, et al. Integrated hydrologic modeling in the inland Heihe River Basin, Northwest China[J]. Sciences in Cold and Arid Regions, 2013, 5(1): 35-50.
    [18] Zhang Yanlin, Cheng Guodong, Li Xin, et al. Influences of frozen ground and climate change on hydrological processes in an alpine watershed: A case study in the upstream area of the Hei′he River, Northwest China[J]. Permafrost and Periglacial Processes, 2017, 28(2): 420-432.
    [19] Niu Guoyue, Yang Zongliang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 2006, 7(5): 937-952.
    [20] Gao Yanhong, Li Kai, Chen Fei, et al. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(18): 9258-9278.
    [2[1] Yang Yong, Chen Rensheng, Ye Baisheng, et al. Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold regions (Ⅰ): model comparison[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1545-1554. [阳勇, 陈仁升, 叶柏生, 等. 寒区典型下垫面冻土水热过程对比研究(Ⅰ): 模型对比[J]. 冰川冻土, 2013, 35(6): 1545-1554.]
    [22] Yang Yong, Chen Rensheng, Ye Baisheng, et al. Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold regions (Ⅱ): water and heat transfer[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1555-1563. [阳勇, 陈仁升, 叶柏生, 等. 寒区典型下垫面冻土水热过程对比研究(Ⅱ): 水热传输[J]. 冰川冻土, 2013, 35(6): 1555-1563.]
    [23] Hao Zhenchun, Liang Zhihao, Liang Liqiao, et al. Adaptability analysis of DHSVM model in runoff simulation of Baoku River basin[J]. Water Resources and Power, 2012, 30(11): 9-12. [郝振纯, 梁之豪, 梁丽乔, 等. DHSVM模型在宝库河流域的径流模拟适用性分析[J]. 水电能源科学, 2012, 30(11): 9-12.]
    [24] Monteith J L. Evaporation and surface temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1981, 107(451): 1-27.
    [25] Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces[J]. Quarterly Journal of the Royal Meteorological Society, 1988, 114(480): 373-398.
    [26] Wang Qingfeng, Zhang Tingjun, Wu Jichun, et al. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 19-29. [王庆峰, 张廷军, 吴吉春, 等. 祁连山区黑河上游多年冻土分布考察[J]. 冰川冻土, 2013, 35(1): 19-29.]
    [27] Liston G E, Elder K. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)[J]. Journal of Hydrometeorology, 2006, 7(2): 217-234.
    [28] Ran Youhua, Li Xin, Lu Ling. MICLCover land cover map of the Heihe River Basin[DB]. Heihe Plan Science Data Center, 2011. DOI:10.3972/westdc.010.2013.db.heihe. [冉有华, 李新, 卢玲. 黑河流域1公里土地覆盖格网数据集[DB]. 黑河计划数据管理中心, 2011. DOI:10.3972/westdc.010.2013.db.heihe.]
    [29] Li Fuxing, Qiu Baoming. Agrotype in 1980′s dataset of the Heihe River Basin[DB]. Heihe Plan Science Data Center, 1988. [李福兴, 仇保铭. 黑河流域1980年代土壤类型数据集[DB]. 黑河计划数据管理中心, 1988.]
    [30] Zhao Yanbo, Cao Xuecheng, Nan Zhuotong, et al. An automatic method for generating stream network data for the DHSVM model using open source GIS[J]. Remote Sensing Technology and Application, 2016, 31(4): 793-800. [赵彦博, 曹学诚, 南卓铜, 等. 基于开源GIS的DHSVM模型河网数据自动制备方法应用研究[J]. 遥感技术与应用, 2016, 31(4): 793-800.]
    [3[1] Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56.
    [32] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I: a discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290.
    [33] Yang Yong, Chen Rensheng, Song Yaoxuan, et al. Measurement and estimation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River basin, China[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 1055-1062. [阳勇, 陈仁升, 宋耀选, 等. 黑河上游山区草地蒸散发观测与估算[J]. 应用生态学报, 2013, 24(4): 1055-1062.]
    [34] Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London, 1970, 10(3): 120-145.
    [35] Wang Zhongfu, Yang Lixiao, Bai Xiao, et al. Evaporation paradox in the Heihe River basin[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1323-1332. [王忠富, 杨礼箫, 白晓, 等. "蒸发悖论"在黑河流域的探讨[J]. 冰川冻土, 2015, 37(5): 1323-1332.]
    [36] Xi Axing, Liu Zhihui, Lu Wenjun. Processes of seasonal frozen soil freezing-thawing and impact on snowmelt runoff in arid area[J]. Research of Soil and Water Conservation, 2016, 23(2): 333-339.
    [37] Ouyang Wei, Bing Liu, Huang Haobo, et al. Watershed water circle dynamics during long term farmland conversion in freeze-thawing area[J]. Journal of Hydrology, 2015, 523: 555-562.
    [38] Huai Baojuan, Li Zhongqin, Sun Meiping, et al. RS analysis of glaciers change in the Heihe River basin in the last 50 years[J]. Acta Geographica Sinica, 2014, 69(3): 365-377. [怀保娟, 李忠勤, 孙美平, 等. 近50年黑河流域的冰川变化遥感分析[J]. 地理学报, 2014, 69(3): 365-377.]
    [39] Peng Xiaoqing, Zhang Tingjun, Pan Xiaoduo, et al. Spatial and temporal variations of seasonally frozen ground over the Heihe River basin of Qilian Mountain in western China[J]. Advances in Earth Science, 2013, 28(4): 497-508. [彭小清, 张廷军, 潘小多, 等. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.]
    [40] Zhang Kai, Wang Runyuan, Han Haitao, et al. Hydrological and water resources effects under climate change in Heihe River basin[J]. Resources Science, 2007, 29(1): 77-83. [张凯, 王润元, 韩海涛, 等. 黑河流域气候变化的水文水资源效应[J]. 资源科学, 2007, 29(1): 77-83.]
    [4[1] Wu Feng, Zhang Jinyan, Wang Zhan, et al. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 79: 11-19.
    [42] Wang Yuhan, Yang Dawen, Lei Huimin, et al. Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1064-1071. [王宇涵, 杨大文, 雷慧闽, 等. 冰冻圈水文过程对黑河上游径流的影响分析[J]. 水利学报, 2015, 46(9): 1064-1071.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700