涂层材料表面硬度温度相关性理论模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature-dependent Model to Estimate the Surface Hardness of Thin Films
  • 作者:麻建坐 ; 曹晓峰 ; 彭钿忠
  • 英文作者:MA Jian-zuo;CAO Xiao-feng;PENG Dian-zhong;School of Mechanical Engineering, Chongqing Industry Polytechnic College;
  • 关键词:涂层 ; 表面硬度 ; 温度相关性 ; 理论模型 ; 预测
  • 英文关键词:thin film;;surface hardness;;temperature-dependent;;theoretical model;;prediction
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆工业职业技术学院机械工程学院;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(11602041,51875068);; 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0475);; 重庆市教委科学技术研究资助项目(KJ1603004)~~
  • 语种:中文;
  • 页:BMJS201901010
  • 页数:7
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:75-81
摘要
目的理论表征涂层材料温度相关性表面硬度。方法在材料温度相关性强度理论表征最新研究成果基础上,结合材料硬度与强度的定量关系,综合考虑涂层材料制备温度和使役温度对材料力学性能的影响,建立了涂层材料温度相关性表面硬度理论表征模型。结果该理论表征模型建立了不同温度下涂层材料表面硬度与参考温度下的表面硬度、温度相关性弹性模量、残余热应力、温度、材料熔点等之间的定量关系,利用建立的模型,可以由任意参考温度下的涂层材料表面硬度预测不同温度下的涂层材料表面硬度。为了验证模型的正确性,采用建立的理论表征模型,分别预测了碳化硼、碳化硅、类金刚石、钛合金、氧化镍等涂层材料的温度相关性表面硬度,并与实验测试结果进行了对比,结果表明理论预测值与实验值具有很好的一致性。结论建立的理论表征模型可以有效地预测不同温度下的涂层材料表面硬度,为涂层材料的温度相关性硬度理论预测提供了途径。
        The work aims to characterize the temperature-dependent surface hardness of thin films theoretically. In consideration of preparation temperature of thin films and effects of service temperature on mechanical properties of materials, the theoretical temperature-dependent surface hardness characterization model for thin films was developed based on the latest research achievement of theoretical characterization for temperature-dependent strength and the quantitative relationship between hardness and strength of materials. The theoretical characterization model was used to establish the quantitative relation between coating surface hardness at different temperature and the surface hardness at reference temperature, the temperature-dependent Young's modulus, the residual thermal stress, the temperature, and the melting point. The surface hardness of thin films at different temperatures could be predicted from the surface hardness at the reference temperature by the model. To verify the model, the temperature-dependent surface hardness of thin films like BC, SiC, amorphous carbon, Ti alloy, and NiO was respectively predicted by the established theoretical characterization model and then compared with the experimental results. The theoretical prediction values were consistent with the experimental results. The model can effectively predict the surface hardness of thin films at different temperature and provide a way for theoretical prediction of temperature-dependent surface hardness of thin films.
引文
[1]赵子鹏,李忠盛,张新华,等.合金钢热障涂层等离子喷涂及高温力学特性研究[J].表面技术,2017,46(5):88-93.ZHAO Zi-peng,LI Zhong-sheng,ZHANG Xin-hua,et al.Preparation and mechanical behavior at high temperature of plasma sprayed thermal barrier coatings on alloyed steel[J].Surface technology,2017,46(5):88-93.
    [2]吴斌,鲁侠,王永欣,等.TiN及TiSiN涂层在海水环境下的摩擦学行为研究[J].表面技术,2017,46(11):143-148.WU Bin,LU Xia,WANG Yong-xin,et al.Tribological behavior of TiN and TiSiN coatings in seawater[J].Surface technology,2017,46(11):143-148.
    [3]鲜广,赵海波,梁红樱,等.TiAlSiN纳米复合涂层的改性研究现状及发展[J].表面技术,2017,46(8):33-42.XIAN Guang,ZHAO Hai-bo,LIANG Hong-ying,et al.Modification research status and development of TiAlSiNnano-composite coatings[J].Surface technology,2017,46(8):33-42.
    [4]陈亚军,周姝,魏鹏宇.表面显微硬度国内外检测标准探析[J].表面技术,2015,44(6):98-103.CHEN YA-jun,ZHOU Shu,WEI Peng-yu.Introduction of domestic and foreign standards on microindentation hardness testing[J].Surface technology,2015,44(6):98-103.
    [5]杨光,葛志宏.几种薄膜涂层硬度测试方法的比较[J].表面技术,2008,37(2):85-87.YANG Guang,GE Zhi-hong.The comparison and evaluation for several testing methods of film coating hardness[J].Surface technology,2008,37(2):85-87.
    [6]FRISCHMUTH T,SCHNEIDER M,MAURER D,et al.Inductively-coupled plasma-enhanced chemical vapour deposition of hydrogenated amorphous silicon carbide thin films for MEMS[J].Sensors&actuators A:Physical,2016,247:647-655.
    [7]ROUHANI M,HONG C N,JENG Y R.In-situ thermal stability analysis of amorphous carbon films with different sp3,content[J].Carbon,2018,130:401-409.
    [8]HAN Z,LI G,TIAN J,et al.Microstructure and mechanical properties of boron carbide thin films[J].Materials letters,2002,57(4):899-903.
    [9]LIU G,YANG Y,JIN N,et al.The structural characterizations of Ti-17 alloy films prepared by magnetron sputtering[J].Applied Surface Science,2017,427:774-781.
    [10]FASAKI I,KOUTOULAKI A,KOMPITSAS M,et al.Structural,electrical and mechanical properties of NiOthin films grown by pulsed laser deposition[J].Applied surface science,2010,257(2):429-433.
    [11]CHICOT D,YETNA N'JOCK M,ROUDET F,et al.Some improvements for determining hardness of homogeneous materials from the work-of-indentation[J].International journal of mechanical sciences,2016(105):279-290.
    [12]TABOR D.The hardness of metals[M].London:Oxford University Press,1951.
    [13]HAY J L,OLIVE W C,BOLSHAKOV A,et al.Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation[J].Mrs Proceedings,1998,522:101-106.
    [14]MESAROVIC S D J,FLECK N A.Spherical indentation of elastic-plastic solids[J].Proceedings:Mathematical,physical and engineering sciences,1999,455(1987):2707-2728.
    [15]PARK Y J,PHARR G M.Nanoindentation with spherical indenters:Finite element studies of deformation in the elastic-plastic transition regime[J].Thin solid films,2004,447-448:246-250.
    [16]LEITNER A,MAIER-KIENER V,KIENER D.Essential refinements of spherical nanoindentation protocols for the reliable determination of mechanical flow curves[J].Materials&design,2018,146:69.
    [17]FLINN R A,TROJAN P K.Engineering materials and their applications[M].Third ed.Boston:Houghton Mifflin,1986:84.
    [18]SHACKELFORD J F.Introduction to materials science for engineers[M].Third ed.New York:MacMillan,1992:349.
    [19]CALLISTER J R.Materials science and engineering:An introduction[M].Sixth ed.New York:John Wiley,2003:139.
    [20]BOYER H E,GALL T L.Metals handbook[M].Desk ed.Geauga:ASM International,1985:1-60.
    [21]BROOKS I,LIN P,PALUMBO G,et al.Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials[J].Materials science&engineering:A,2008,491(1):412-419.
    [22]BUSBY J T,HASH M C,WAS G S.The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J].Journal of nuclear materials,2005,336(2):267-278.
    [23]EDWARDS D J,GARNER F A,SIMONEN E P,et al.Characterization of neutron-irradiated 300-series stainless steels to assess mechanisms of irradiation assisted stress corrosion cracking[J].Environmental degradation,2005,406:820.
    [24]LI Wei-guo,YANG Fan,FANG Dai-ning.The temperature-dependent strength model for ultra-high temperature ceramics[J].Acta mechanica sinica,2010,26(2):235-239.
    [25]LI Wei-guo,ZHANG Xian-he,KOU Hai-bo,et al.Theoretical prediction of temperature dependent yield strength for metallic materials[J].International journal of mechanical sciences,2016,105:273-278.
    [26]ZHANG Xian-he,LI Wei-guo,MA Jian-zuo,et al.Anovel temperature dependent yield strength model for metals considering precipitation strengthening and strain rate[J].Computational materials science,2017,129:147-155.
    [27]DENG Yong,LI Wei-guo,SHAO Jia-xing,et al.A novel theoretical model to predict the temperature-dependent fracture strength of ceramic materials[J].Journal of the european ceramic society,2017,37:5071-5077.
    [28]LI Ying,LI Wei-guo,ZHANG Xian-he,et al.Modeling of temperature dependent yield strength for stainless steel considering nonlinear behavior and the effect of phase transition[J].Construction and building materials,2018,159:147-154.
    [29]MA Jian-zuo,LI Wei-guo,ZHANG Xian-he,et al.Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy[J].Materials science&engineering:A,2016,676:165-172.
    [30]李卫国,邵家兴,寇海波,等.材料高温力学性能理论表征方法研究进展[J].固体力学学报,2017,38(2):93-123.LI Wei-guo,SHAO Jia-xing,KOU Hai-bo,et al.Research progress on the theoretical characterization methods for the high-temperature mechanical properties of material[J].Chinese journal of solid mechanics,2017,38(2):93-123.
    [31]闫光远.TiSiN涂层的制备及其性能研究[D].济南:山东大学,2014.YAN Guang-yuan.Fundamental research on preparation and properties of TiSiN coating[D].Jinan:Shandong University,2014.
    [32]令利增.变形及残余应力对金属镀层力学性能的影响[D].湘潭:湘潭大学,2009.LING Li-zeng.The effect of deformation and stress on mechanical properties of electrodeposited metal[D].Xiangtan:Xiangtan University,2009.
    [33]孔德军,张永康,朱伟,等.ZrO2热障涂层残余应力分析[J].材料热处理学报,2008,29(1):128-132.KONG De-jun,ZHANG Yong-kang,ZHU Wei,et al.Study on residual stress of ZrO2 thermal barrier coating[J].Transactions of materials and heat treatment,2008,29(1):128-132.
    [34]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.LIANG Ying-jiao,CHE Yin-chang.Handbook of inorganic thermodynamic data[M].Shenyang:Northeastern University Press,1993.
    [35]BEEGAN D,LAUGIER M T.Application of composite hardness models to copper thin film hardness measurement[J].Surface&coatings technology,2005,199(1):32-37.
    [36]PUCHI-CABRERA E S,STAIA M H,IOST A.Modeling the composite hardness of multilayer coated systems[J].Thin solid films,2015,578:53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700