中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method
  • 作者:林海飞 ; 卜婧婷 ; 严敏 ; 白杨
  • 英文作者:LIN Hai-fei;BU Jing-ting;YAN Min;BAI Yang;College of Safety Science and Engineering,Xi'an University of Science and Technology;Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology;
  • 关键词:氮吸附法 ; 压汞法 ; 联孔分布 ; 全孔径 ; 中低阶煤
  • 英文关键词:nitrogen adsorption method;;mercury intrusion method;;joint pore distribution;;full-aperture;;middle and low rank coal
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学安全科学与工程学院;西安科技大学西部矿井开采及灾害防治教育部重点实验室;
  • 出版日期:2019-01-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.165
  • 基金:国家自然科学基金(51734007,51674192,51604220,51874236)
  • 语种:中文;
  • 页:XKXB201901001
  • 页数:8
  • CN:01
  • ISSN:61-1434/N
  • 分类号:4-11
摘要
为进一步分析中低阶煤孔隙结构特征,选取新疆矿区4个典型煤样,通过低温氮吸附法和压汞法测试了煤样的孔隙参数,得到2种测试方法下孔隙比表面积及孔隙体积分布,提出2种测试方法的全孔径段孔隙联孔原则:首先在不超过各自测试范围的前提下,测试微孔孔隙特征以氮吸附法为主,中孔及大孔孔隙特征主要以压汞法为主,联孔位置在过渡孔段; 2种方法在同一孔隙直径处比表面积增量或孔隙体积增量差值最小处即为联孔段。分析了实验煤样全孔径段的孔隙特征,研究结果表明:采用氮吸附法和压汞法对煤样全孔径段孔隙结构分析的联孔位置,对于低阶煤为50~60 nm,中阶煤为85~90 nm,均位于过渡孔段;全孔径段孔隙比表面积占比,低阶煤以微孔为主,中阶煤受微孔和过渡孔共同作用;中低阶煤的全孔径段孔隙体积占比均以中大孔为主。
        In order to further analyze the pore structure characteristics of middle and low rank coal,4 typical coal samples in Xinjiang mining area were selected. The pore parameters of coal samples were tested with low temperature nitrogen adsorption and mercury intrusion method. The pore specific surface area and pore volume distribution were obtained. The pore connection principle of full-aperture with two testing methods was put forward. Firstly,under the premise of not exceeding the test range,the pore characteristics of micropore is determined by nitrogen adsorption,the pore characteristics of mesopore and macropore is determined by mercury injection,and the location of the connection position is in the transition pore section. The two methods are linked pore segments where the difference between specific surface area increment and pore volume increment is minimum at the same pore diameter. The pore characteristics of full-aperture of coal samples was analyzed. The results show that for the pore structure analy-sis with nitrogen adsorption method and mercury intrusion method,the pore connection position of low rank coal is 50 ~ 60 nm,and the pore connection position of middle rank coal is 85 ~ 90 nm,which are located in the transition pore section. For the proportion of pore specific surface area of full-aperture,the low rank coal is mainly micropore,and the middle rank coal is affected by micropore and transition pore.For the proportion of pore volume of full-aperture,the middle and low rank coal are mainly mesopore and macropore.
引文
[1]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,29(5):28-30.ZHAO Zhi-gen,TANG Xiu-yi. Study of micropore in coal by low-temperature nitrogen adsorption method and its significance[J]. Coal Geology and Exploration,2001,29(5):28-30.
    [2] Okolo G N,Everson R C,Neomagus H W J P,et al.Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel,2015,141:293-304.
    [3]吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.JI Li-ming,QIU Jun-li,XIA Yan-qing,et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica,2012,33(2):249-256.
    [4]宋晓夏,唐跃刚,李伟,等.基于小角X射线散射构造煤孔隙结构的研究[J].煤炭学报,2014,39(4):719-724.SONG Xiao-xia,TANG Yue-gang,LI Wei,et al. Pore structure in tectonically deformed coals by small angle X-ray scattering[J]. Journal of China Coal Society,2014,39(4):719-724.
    [5]李伟,要惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1127-1132.LI Wei,YAO Hui-fang,LIU Hong-fu,et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by Micro-CT[J]. Journal of China Coal Society,2014,39(6):1127-1132.
    [6] Zhao Y,Sun Y,Liu S,et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel,2017,190:359-369.
    [7]戚灵灵,王兆丰,杨宏民,等.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,2012,40(8):36-39.QI Ling-ling,WANG Zhao-feng,YANG Hong-min,et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology,2012,40(8):36-39.
    [8]张先伟,孔令伟.利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J].岩土力学,2013,34(S2):134-142.ZHANG Xian-wei,KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics,2013,34(S2):134-142.
    [9] Peng C,Zou C,Yang Y,et al. Fractal analysis of high rank coal from southeast Qinshui basin by using gas adsorption and mercury porosimetry[J]. Journal of Petroleum Science and Engineering,2017,156:235-249.
    [10]赵迪斐,郭英海,毛潇潇,等.基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J].煤炭学报,2017,42(6):1517-1526.ZHAO Di-fei,GUO Ying-hai,MAO Xiao-xiao,et al.Characteristics of macro-nanopores in anthracite coal based on mercury injection,nitrogen adsorption and FESEM[J]. Journal of China Coal Society,2017,42(6):1517-1526
    [11]郗兆栋,唐书恒,张松航,等.腐泥煤的孔隙结构及分形特征[J].煤炭科学技术,2016,44(11):103-109.XI Zhao-dong,TANG Shu-heng,ZHANG Song-hang,el al. Pore structure and fractal features of sapropelite[J].Coal Science and Technology,2016,44(11):103-109.
    [12]周龙刚,吴财芳.黔西比德-三塘盆地主采煤层孔隙特征[J].煤炭学报,2012,37(11):1878-1884.ZHOU Long-gang,WU Cai-fang. Pore characteristics of the main coal seams in Bide-Santang basin in Western Guizhou Province[J]. Journal of China Coal Society,2012,37(11):1878-1884.
    [13]姜家钰,雷东记,谢向向,等.构造煤孔隙结构与瓦斯耦合特性研究[J].安全与环境学报,2015,15(1):124-128.JIANG Jia-yu,LEI Dong-ji,XIE Xiang-xiang,et al.Study on coupling characteristics of tectonic coal pore structure and gas[J]. Journal of Safety and Environment,2015,15(1):124-128.
    [14]代全齐,罗群,张晨,等.基于核磁共振新参数的致密油砂岩储层孔隙结构特征——以鄂尔多斯盆地延长组7段为例[J].石油学报,2016,37(7):887-897.DAI Quan-qi,LUO Qun,ZHANG Chen,et al. Pore structure characteristics of tight-oil sandstonr reservoir based on a new parameter measured bu NMR experiment:a case of seventh Member in Yanchang Formation,Ordos Basin[J]. Acta Petrolei Sinica,2016,37(7):887-897.
    [15]宁传祥,姜振学,高之业,等.用核磁共振和高压压汞定量评价储层孔隙连通性——以沾化凹陷沙三下亚段为例[J].中国矿业大学学报,2017,46(3):578-585.NING Chuan-xiang,JIANG Zhen-xue,GAO Zhi-ye,et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:a case study of the lower section of Es3 in Zhanhua sag[J]. Journal of China University of Mining and Technology,2017,46(3):578-585.
    [16]李志清,沈鑫,戚志宇,等.基于压汞法与气体吸附法的页岩孔隙结构特征对比研究[J].工程地质学报,2017,25(6):1405-1413.LI Zhi-qing,SHEN Xin,QI Zhi-yu,et al. Comparations between mercury intrusion and gas adsorption for pore structure characteristics of shale[J]. Journal of Engineering Geology,2017,25(6):1405-1413.
    [17]张召召,潘结南,李猛,等.基于压汞和低温氮吸附联合试验的不同变质程度煤全孔隙结构特征研究[J].煤矿安全,2018,49(4):25-29.ZHANG Zhao-zhao,PAN Jie-nan,LI Meng,et al. Total pore structure characteristics of coal with different metamorphic degree based on joint experiment of mercury intrusion and low temperature nitrogen adsorption[J].Safety in Coal Mines,2018,49(4):25-29.
    [18]宋磊,宁正福,孙一丹,等.联合压汞法表征致密油储层孔隙结构[J].石油实验地质,2017,39(5):700-705.SONG Lei,NING Zheng-fu,SUN Yi-dan,et al. Pore structure characterization of tight oil reservoirs by a combined mercury method[J]. Petroleum Geology and Experiment,2017,39(5):700-705.
    [19]杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.YANG Feng,NING Zheng-fu,HU Chang-peng,et al.Characterization of micorscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica,2013,34(2):301-311.
    [20]林海飞,程博,李树刚,等.新疆阜康矿区煤层孔隙结构特征的氮吸附实验研究[J].西安科技大学学报,2015,35(6):721-726.LIN Hai-fei,CHENG Bo,LI Shu-gang,et al. Nitrogen adsorption experimental study on pore structure characteristics of coal seams in Xinjiang Fukang mining area[J]. Journal of Xi’an University of Science and Technology,2015,35(6):721-726.
    [21]王翠霞,李树刚.低阶煤孔隙结构特征及其对瓦斯吸附的影响[J].中国安全科学学报,2015,25(10):133-138.WANG Cui-xia,LI Shu-gang. Pore structure characteristics of low rank coal and their influence on gas adsorption[J]. China Safety Science Journal,2015,25(10):133-138.
    [22] Labani M M,Rezaee R,Saeedi A,et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption,gas expansion and mercury porosimetry:a case study from the perth and Canning Basins,Western Australia[J]. Journal of Petroleum Science and Engineering,2013,112(3):7-16.
    [23] WANG M,YU Q. Pore structure characterization of carboniferous shales from the eastern Qaidam basin,China:combining helium expansion with low-pressure adsorption and mercury intrusion[J]. Journal of Petroleum Science and Engineering,2017,152:91-103.
    [24]ХодотB B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966.ХодотB B. Coal and gas outburst[M]. SONG Shizhao,WANG You-an,Translation. Beijing:China Industry Press,1966.
    [25]严继民,张继元.吸附与凝聚:固体的表面与孔[M].北京:科学出版社,1979.YAN Ji-min,ZHANG Ji-yuan. Adsorption and condensation:the surface and pore of solid[M]. Beijing:Science Press,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700