米苦荞果壳率及其相关性状的遗传研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Analysis of Fruit Hull Rate and Related Traits on Tartary Buckwheat
  • 作者:崔娅松 ; 王艳 ; 杨丽娟 ; 吴朝昕 ; 周飘 ; 冉盼 ; 陈庆富
  • 英文作者:Cui Yasong;Wang Yan;Yang Lijuan;Wu Chaoxin;Zhou Piao;Ran Pan;Chen Qingfu;Research Center of Buckwheat Industry Technology, Guizhou Normal University;
  • 关键词:苦荞 ; 果壳率 ; 广义遗传力 ; 狭义遗传力 ; 直接效应 ; 间接效应
  • 英文关键词:Tartary buckwheat;;The rate of fruit shell;;Broad-sense heritability;;Narrow-sense heritability;;Direct effect;;Indirect effect
  • 中文刊名:ZWZZ
  • 英文刊名:Crops
  • 机构:贵州师范大学荞麦产业技术研究中心;
  • 出版日期:2019-04-12 14:52
  • 出版单位:作物杂志
  • 年:2019
  • 期:No.189
  • 基金:国家自然科学基金(31471562;31860408);; 国家燕麦荞麦现代农业产业技术体系专项资金(CARS-07-A5);; 贵州省高层次创新型人才培养对象十百千计划(2014GZ97588);; 贵州省荞麦工程技术研究中心(黔科合农G字【2015】4003号);; 贵州省农业科技支撑计划(黔科合支撑【2017】2505;黔科合支撑[2018]2320)
  • 语种:中文;
  • 页:ZWZZ201902009
  • 页数:10
  • CN:02
  • ISSN:11-1808/S
  • 分类号:57-66
摘要
以薄壳黑米荞BRT2016-1和迟开裂型黑米荞BRT2016-2为母本、厚壳不落粒野苦荞WT2016-1和长黑粒苦荞T2016-1为父本,组配成3类杂交组合(A、B、C),对杂交组合F_2和F_3群体果壳率、粒长、粒宽、粒重、果仁重、粒长/粒宽(长/宽)6个目标性状进行广义遗传力、狭义遗传力、相关性和通径分析。结果表明,各组合果壳率广义遗传力平均为0.71,组合间变幅为0.42~0.91;狭义遗传力平均为0.18,组合间变幅为0.07~0.27;广义遗传力与狭义遗传力数值相差极大。与果壳率相关的5个目标性状(粒长、粒宽、粒重、果仁重、长/宽)组合间的广义遗传力分别为0.84、0.89、0.90、0.78、0.71,狭义遗传力分别为0.32、0.30、0.25、0.21、0.28。相关性分析表明,果壳率与粒长、粒宽、粒重的平均正相关性均达显著水平,其中,F_2植株中,平均相关系数依次为0.077、0.145、0.099;F_3家系中,平均相关系数分别为0.177、0.253、0.428。果壳率与果仁重在组合A和组合C中呈负相关关系,果仁重越大,果壳率越小。通径分析表明,粒重和果仁重对果壳率直接效应最大,前者为正效应,后者为负效应,两个性状5个组合的F_2植株平均直接效应分别为4.072、-4.087,平均间接效应分别为5.574、-5.570,F_3家系平均直接效应分别为1.284、-1.251,平均间接效应分别为2.526、-2.524,且间接效应均大于直接效应。因此,低果壳率的选择应着重考虑粒重、果仁重两个性状的效应,且需兼顾粒长、粒宽、长/宽性状的选择。
        The thin-shell black rice lines BRT2016-1 and BRT2016-2 as the female parents were crossed with the thick-shell wild Tartary buckwheat accession WT2016-1 and common Tartary buckwheat line T2016-1 as the male parents, and five progenies populations including three crosses were produced for this study. The broadsense heritability, narrow-sense heritability, correlation and path analysis were for six target characters of F_2 and F_3 populations, including shell percentage, grain length, grain width, grain weight, kernel weight and length/width. Broadsense heritability of shell rate was 0.71, the range of broad-sense heritability was 0.42-0.91, indicating significant genetic effects. The average narrow-sense heritability was 0.18, and the variation combinations was 0.07-0.27. The difference between broad-sense heritability and narrow-sense heritability was very significant, suggesting great nonadditive genetic effects. Broad-sense heritability of 5 target characters(grain length, grain width, grain weight, kernel weight, length/width) related to fruit hull percentage were 0.84, 0.89, 0.90, 0.78 and 0.71, respectively. Narrow-sense heritabilities were 0.32, 0.30, 0.25, 0.21 and 0.28, respectively. Correlation analysis showed that there were significant average positive correlation between shell rate and grain length, grain width and grain weight, the average correlation coefficients of F_2 plants and F_3 families were 0.077, 0.145, 0.099 and 0.177, 0.253, and 0.428, respectively. There was a negative correlation between shell rate and kernel weight in combination A and combination C, the bigger the kernel weight, the smaller the shell rate. Path analysis showed that grain weight and kernel weight had the greatest direct effect on shell percentage, the former had a positive effect and the latter had a negative effect. The average direct effects of the five hermaphroditic combinations were 4.072 and-4.087, and the average indirect effects were 5.574 and-5.57,the average direct effects of F_3 families were 1.284 and-1.251, and the average indirect effects were 2.526 and-2.524,respectively. The indirect effects were greater than the direct effects, indicating that the influence factors of fruit shell percentage were caused by the effects of the target traits. Therefore, the effects of traits such as grain weight and kernel weight should be considered in the selection of low shell percentage, and the selection of grain length, grain width and length/width should be considered.
引文
[1]陈庆富.荞麦属植物科学.北京:科学出版社,2012.
    [2]林汝法.苦荞举要.北京:中国农业科学出版社,2013.
    [3]李月,石桃雄,顾亮亮,等.苦荞地方资源子实主要性状的遗传变异研究.植物遗传资源学报,2014,15(3):504-510.
    [4]杨丽娟,陈庆富.荞麦属植物遗传育种的最新研究进展.种子,2018,37(4):52-58.
    [5]Krotov A S,Dranenko E T. An amphidiploid buckwheat,F. giganteum Krotov sp. nova. Byulleten,Vsesoyuznogo Ordena Lenina Instituta Rastenievodstva Imeni N. I. Vavilova,1973(30):41-45.
    [6]Woo S H,Kim S H,Tsai K S,et al. Pollen-tube behavior and embryo development in interspecific crosses among the genus Fagopyrum.Journal of Plant Biology,2008,51(4):302-310.
    [7]陈庆富.荞麦生产状况及新类型栽培荞麦育种研究的最新进展.贵州师范大学学报(自然科学版),2018,36(3):1-7.
    [8]陈庆富,陈其皎,石桃雄,等.苦荞厚果壳形状的遗传及其与产量因素的相关性研究.作物杂志,2015(2):27-31.
    [9]陈庆富.荞麦生产100问.贵州:贵州民族出版社,2008.
    [10]Wang Y J,Campbell C G. Tartary buckwheat breeding(Fagopyrum tataricum Gaertn.)through hybridization with its rice-tartary type.Euphytica,2007,156(3):399-405.
    [11]饶庆琳,陈其皎,陈庆富.薄壳苦荞品系籽粒总黄酮含量变异及与主要产量构成要素间的相关性.江苏农业科学,2016,44(10):333-336.
    [12]薄颖生,彭少兵,翟梅枝,等.核桃青果与坚果外观性状相关性研究.北方园艺,2014(8):13-17.
    [13]龚强,王国荣,李博,等.大麦皮壳率快速测定方法研究.长江大学学报(自然科学版),2017,14(14):47-51.
    [14]陆美琴,丁守仁.二棱大麦粒重、皮壳率和粒形性状的遗传分析.浙江农业学报,1991(4):164-168.
    [15]Fesenko I N. Non-shattering accessions of Fagopyrum tataricum Gaertn. carry recessive alleles at two loci affecting development of functional abscission layer. Fagopyrum,2007,23(2):7-10.
    [16]Mukasa Y,Suzuki T,Honda Y. Suitability of rice-tartary buckwheat for crossbreeding and for utilization of rutin. Japan Agricultural Research Quarterly,2009,43(3):199-206.
    [17]Li C H,Kobayashi K,Yoshida Y,et al. Genetic analyses of agronomic traits in Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn.). Breeding Science,2012,62(4):303-309.
    [18]王庆钰,乔春贵,孙云德,等.油用向日葵(Helianthus annuus L.)皮壳率的遗传研究.中国农业科学,1993,26(5):38-44.
    [19]杜欢,张颖,薛梦瑶,等.大麦株高近等基因系的籽粒性状差异及相关性分析.华北农学报,2015,30(5):97-103.
    [20]徐绍英,陈文华,张伟梅,等.二棱大麦籽粒外观品质性状的遗传研究.浙江大学学报(农业与生命科学版),1994(6):593-598.
    [21]姚世鸿,王景佑,陈庆富.遗传学.贵阳:贵州人民出版社,2001:157-175.
    [22]陈庆富.生物统计学.北京:高等教育出版社,2011.
    [23]孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2006.
    [24]陈福寿,李美珍.黄麻主要经济性状遗传力的研究.中国麻业科学,1982(4):18-22.
    [25]马惠馨,吴炳玉,王淑贤,等.辣(甜)椒杂种F2数量性状遗传相关与遗传的研究初报.沈阳农业大学学报,1988,19(1):15-20.
    [26]杨光宇,郑惠玉,韩春风.栽培大豆(G.max)×半野生大豆(G.gracilis)后代主要农艺性状遗传参数的初步分析.作物学报,1992,18(6):439-446.
    [27]田硕,张喜春.番茄果实主要品质性状的配合力及遗传力分析.中国农学通报,2014,30(13):112-117.
    [28]向理军,雷中华,石必显,等.油用向日葵数量性状的遗传变异和相关分析及育种选择.黑龙江农业科学,2010(9):35-38.
    [29]Tan Y F,Xing Y Z,Li J X,et al. Genetic bases of appearance quality of rice grains in Shanyou 63,an elite rice hybrid. Theoretical and Applied Genetics,1999,99(3/4):642-648.
    [30]Takeda S,Matsuoka M. Genetic approaches to crop improvement:responding to environmental and population changes. Nature Reviews Genetics,2008,9(6):444-457.
    [31]梁龙兵,陈其皎,石桃雄,等.苦荞杂交后代主花序特征遗传变异研究.河南农业科学,2016,45(5):13-17.
    [32]Radovan M,Kluwer A. Path-coefficient analysis of some yield components of sunflower(Helianthus annuus L.). Euphytica,1992,60(3):201-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700