磁共振扩散张量成像多参量评估早产与足月新生儿脑白质发育
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of the development on the preterm and term neonatal brain white matter based on metrics derived from diffusion tensor imaging
  • 作者:李贤军 ; 刘哲 ; 孙亲利 ; 王苗苗 ; 刘聪聪 ; 侯欣 ; 刘黎明 ; 杨健
  • 英文作者:LI Xian-jun;LIU Zhe;SUN Qin-li;WANG Miao-miao;LIU Cong-cong;HOU Xin;LIU Li-ming;YANG Jian;Department of Radiology,the First Affiliated Hospital of Xi'an Jiaotong University;Department of Child Health Care,the First Affiliated Hospital of Xi'an Jiaotong University;
  • 关键词:新生儿 ; 脑白质 ; 发育评估 ; 扩散张量成像 ; 早产儿
  • 英文关键词:neonate;;brain white matter;;evaluation of development;;diffusion tensor imaging;;preterm neonate
  • 中文刊名:XAYX
  • 英文刊名:Journal of Xi'an Jiaotong University(Medical Sciences)
  • 机构:西安交通大学第一附属医院影像科;西安交通大学第一附属医院儿保科;
  • 出版日期:2018-02-02 12:48
  • 出版单位:西安交通大学学报(医学版)
  • 年:2018
  • 期:v.39;No.211
  • 基金:国家重点研发计划资助(No.2016YFC0100300);; 国家自然科学基金面上项目资助(No.81471631和81171317);; 教育部新世纪优秀人才支持计划(No.NCET-11-0438);; 陕西省自然科学基金青年项目资助(No.2017JQ8005);; 西安交通大学第一附属医院青年创新基金资助(No.2011YK.19,2017QN-09)~~
  • 语种:中文;
  • 页:XAYX201802005
  • 页数:6
  • CN:02
  • ISSN:61-1399/R
  • 分类号:22-27
摘要
目的基于磁共振扩散张量成像(DTI)各参量的变化组合特点评估早产与足月新生儿脑白质不同区域的发育状态。方法纳入行常规磁共振成像未见异常的新生儿66例:早产儿33例(男21例,女12例;胎龄30.143~36.286周)、足月儿33例(男22例,女11例;胎龄37.000~41.429周)。行DTI扫描并获取参量:各向异性分数(FA)、平行扩散率(AD)以及垂直扩散率(RD)。运用Spearman秩相关分析分别评价早产儿与足月儿DTI参量与校正胎龄的相关性,并根据Dubois方法对脑白质发育状态进行评估:AD升高、RD降低、FA升高反映轴突排列有序化;AD降低、RD降低、FA不变或升高反映白质预髓鞘化;AD不变、RD降低、FA升高反映白质髓鞘化;采用Mann-Whitney U检验比较各参量的组间差异。结果根据Dubois的评估方法发现,内囊后肢、胼胝体在早产儿期已经处于髓鞘化阶段;大脑脚在足月儿期才开始髓鞘化;早产儿与足月儿放射冠上部、下额枕束以及外囊均处于预髓鞘化阶段。足月儿各感兴趣区域内FA高于早产儿(P<0.05),而除了大脑脚以外的其他区域足月儿的AD和RD均低于早产儿(P<0.05)。结论基于DTI多参量的发育变化和Dubois的方法可以量化评估新生儿脑白质发育状态,其符合髓鞘化和预髓鞘化阶段DTI参量变化特点,早产儿较足月儿的脑白质发育落后。
        Objective To explore developmental states on the preterm and term neonatal brain white matter based on the co-variation of metrics derived from diffusion tensor imaging(DTI).Methods This work enrolled66 neonates,consisting of 33 preterm(21 males and 12 females;gestational age:30.143-36.286 weeks)and 33 fullterm neonates(22 males and 11 females;gestational age:37.000-41.429 weeks).DTI derived metrics included axial diffusivity(AD),radial diffusivity(RD),and fractional anisotropy(FA).Spearman's rank correlation between metrics and postmenstrual age was analyzed in the preterm and term neonates.Developmental states were evaluated according to the method proposed by Dubois:fiber organization was associated with increased AD,decreased RD and increased FA;pre-myelination was related to decreased AD,decreased RD and unchanged/increased FA;myelination was revealed by unchanged AD,decreased RD and increased FA.Mann-Whitney U test was used to compare DTI metrics between the preterm and term neonates.Results According to the method proposed by Dubois,posterior limb of internal capsule and corpus callosum underwent myelination in the preterm-neonate period.Cerebral peduncle started myelination in the term-neonate period.Superior corona radiate,inferior frontooccipital fasciculus and external capsule underwent pre-myelination on preterm and term neonates.FA values were higher in term neonates than those in preterm neonates in all the selected regions(P<0.05).AD and RD values were lower in term neonates than those in preterm neonates in the selected regions except for cerebral peduncle(P<0.05).Conclusion Changes in DTI metrics and the method of Dubois can be used to quantitatively evaluate developmental states of the neonatal brain white matter.The changes coincided with DTI variations associated with pre-myelination and myelination.White matter development is delayed in preterm neonates compared with term neonates.
引文
[1]BALDOLI C,SCOLA E,DELLA ROSA PA,et al.Maturation of preterm newborn brains:A fMRI–DTI study of auditory processing of linguistic stimuli and white matter development[J].Brain Struct Funct,2015,220(6):3733-3751.
    [2]CAI Y,WU X,SU Z,et al.Functional thalamocortical connectivity development and alterations in preterm infants during the neonatal period[J].Neuroscience,2017,356:22-34.
    [3]SUZUKI K.Neuropathology of developmental abnormalities[J].Brain Dev,2007,29(3):129-141.
    [4]VAN KOOIJ BJ,DE VRIES LS,BALL G,et al.Neonatal tract-based spatial statistics findings and outcome in preterm infants[J].Am J Neuroradiol,2012,33(1):188-194.
    [5]DUBOIS J,DEHAENE-LAMBERTZ G,KULIKOVA S,et al.The early development of brain white matter:A review of imaging studies in fetuses,newborns and infants[J].Neuroscience,2014,276(6):48-71.
    [6]QIU A,MORI S,MILLER MI.Diffusion tensor imaging for understanding brain development in early life[J].Annu Rev Psychol,2015,66(1):853-876.
    [7]DUBOIS J,DEHAENE-LAMBERTZ G,PERRIN M,et al.Asynchrony of the early maturation of white matter bundles in healthy infants:Quantitative landmarks revealed noninvasively by diffusion tensor imaging[J].Hum Brain Mapp,2008,29(1):14-27.
    [8]GENG X,GOUTTARD S,SHARMA A,et al.Quantitative tract-based white matter development from birth to age 2 years[J].Neuroimage,2012,61(3):542-557.
    [9]COTECJ,WILSON S,PEDIATRICS AA,et al.Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures:An update[J].Pediatrics,2006,118(6):2587-2602.
    [10]LI X,YANG J,GAO J,et al.A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging[J].PLoS One,2014,9(4):e94592.
    [11]SMITH SM,JENKINSON M,WOOLRICH MW,et al.Advances in functional and structural MR image analysis and implementation as FSL[J].Neuroimage,2004,23(Suppl 1):S208-S219.
    [12]LI X,GAO J,WANG M,et al.Rapid and reliable tract-based spatial statistics pipeline for diffusion tensor imaging in the neonatal brain:Applications to the white matter development and lesions[J].Magn Reson Imaging,2016,34(9):1314-1321.
    [13]SMITH SM,JENKINSON M,JOHANSEN-BERG H,et al.Tract-based spatial statistics:Voxelwise analysis of multi-subject diffusion data[J].Neuroimage,2006,31(4):1487-1505.
    [14]BALL G,COUNSELL SJ,ANJARI M,et al.An optimised tract-based spatial statistics protocol for neonates:Applications to prematurity and chronic lung disease[J].Neuroimage,2010,53(1):94-102.
    [15]OISHI K,MORI S,DONOHUE PK,et al.Multi-contrast human neonatal brain atlas:Application to normal neonate development analysis[J].Neuroimage,2011,56(1):8-20.
    [16]刘岭岭,孛茹婷,杨文君,等.磁共振弥散张量成像技术在新生儿脑白质发育中的研究[J].磁共振成像,2015,6(4):253-257.
    [17]ZANIN E,RANJEVA JP,CONFORT-GOUNY S,et al.White matter maturation of normal human fetal brain.An in vivo diffusion tensor tractography study[J].Brain Behavior,2011,1(2):95-108.
    [18]KUNZ N,ZHANG H,VASUNG L,et al.Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models[J].Neuroimage,2014,96(8):288-299.
    [19]ROSE SE,HATZIGEORGIOU X,STRUDWICK MW,et al.Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age[J].Magn Reson Med,2008,60(4):761-767.
    [20]EIKENES L,LHAUGEN GC,BRUBAKK AM,et al.Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI[J].Neuroimage,2011,54(3):1774-1785.
    [21]JELESCU IO,VERAART J,ADISETIYO V,et al.One diffusion acquisition and different white matter models:How does microstructure change in human early development based on WMTI and NODDI?[J].Neuroimage,2015,107(1):242-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700