小鼠多亚型热休克蛋白/肽疫苗联合PD-L1免疫检查点抑制剂的抗肿瘤实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-tumor experimental study of mouse multi-subtype heat shock protein/peptide vaccine combined with PD-L1 immunological checkpoint inhibitor
  • 作者:李浩江 ; 王振勇 ; 沈师 ; 高超 ; 张彬 ; 王泽昊 ; 眭翔 ; 崔雪梅 ; 袁玫 ; 刘舒云 ; 郭全义 ; 王桂琴
  • 英文作者:Haojiang Li;Zhenyong Wang;Shi Shen;Chao Gao;Bin Zhang;Zeha Wang;Xiang Sui;Xuemei Cui;Mei Yuan;Shuoyun Liu;Quanyi Guo;Guiqin Wang;Department of Microbiology and Immunology, Shanxi Medical University;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries,PLA;
  • 关键词:mHSP/P ; Grp94/P ; 层析 ; PD-L1免疫检查点抑制剂 ; IFN-γ ; IFN-α
  • 英文关键词:multi-subtype heat shock protein/peptide(mHSP/P);;Grp94/peptide(Grp94/P);;chromatography;;PD-L1 immunological checkpoint inhibitor;;IFN-γ;;TNF-α
  • 中文刊名:ZGZL
  • 英文刊名:Chinese Journal of Clinical Oncology
  • 机构:山西医科大学微生物学与免疫学教研室山西医科大学微生物学与免疫学教研室;骨科再生医学北京市重点实验室全军骨科战创伤重点实验室;
  • 出版日期:2019-03-30
  • 出版单位:中国肿瘤临床
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(编号:81772319)资助~~
  • 语种:中文;
  • 页:ZGZL201906003
  • 页数:6
  • CN:06
  • ISSN:12-1099/R
  • 分类号:18-23
摘要
目的:应用小鼠肉瘤组织制备混合多亚型热休克蛋白/肽疫苗(mHSP/P),联合程序性死亡配体(PD-L1)抑制剂治疗小鼠肉瘤。方法:免疫组织化学染色和Elisa蛋白定量鉴定肉瘤细胞MCA207中的热休克蛋白(HSP70、HSP90、Grp94)的表达。制备蛋白悬液,通过蛋白层析技术获取mHSP/P和Grp94/肽肉瘤疫苗(Grp94/P),以Western blot(WB)鉴定。流式细胞术测定细胞毒性作用。Elisa实验测定mHSP/P和Grp94/P刺激产生的干扰素(IFN-γ)、肿瘤坏死因子(TNF-α)。小鼠实验探究肉瘤疫苗对肉瘤生长以及小鼠生存状况的影响。免疫荧光染色MCA207肉瘤细胞表面PD-L1的表达,WB测定IFN-γ对PD-L1表达的影响。动物实验探究PD-L1抑制剂联合mHSP/P对肿瘤的影响。结果:肿瘤组织携带多种亚型的HSP(HSP70、HSP90、Grp94);成功制备肉瘤组织来源的mHSP/P和Grp94/P,Western blot对肿瘤疫苗鉴定并且流式细胞学测定未发现细胞毒性;制备的mHSP/P较Grp94/P刺激产生更多的IFN-γ和TNF-α细胞因子(P<0.05)。肉瘤细胞表面PD-L1的表达随着IFN-γ的介入而增高;动物实验显示PD-L1抑制剂联合mHSP/P提高了免疫反应的抗肿瘤作用(P<0.05)。结论:肿瘤来源的mHSP/P和Grp94/P可以作为肿瘤疫苗在动物实验中使用。mHSP/P比Grp94/P能诱发更强的抗肿瘤免疫反应。IFN-γ刺激肉瘤细胞PD-L1的表达而导致免疫逃逸。PD-L1抑制剂联合mHSP/P提高了抗肿瘤作用。
        Objective: To evaluate the anti-tumor activity of mouse multi-subtype heat shock protein/peptide(mHSP/P) vaccine in combination with a programmed death ligand 1(PD-L1) inhibitor in mouse sarcoma. Methods: Immunohistochemical staining and enzyme-linked immunosorbent assay(Elisa) was used to quantitatively identify the expression of heat shock proteins(HSP70, HSP90,Grp94) in the sarcoma cell line MCA207. From the protein suspension prepared, mHSP/P and Grp94/peptide(Grp94/P) sarcoma vaccines were isolated using chromatography and were identified by Western blot(WB). Flow cytometry was used to determine their cytotoxic effects. The levels of interferon-γ(IFN-γ) and tumor necrosis factor-α(TNF-α) produced upon mHSP/P and Grp94/P stimulation were measured by Elisa. The effect of sarcoma vaccines on the growth and survival of sarcoma was evaluated in mice. The expression of PD-L1 on the surface of MCA207 sarcoma cells was evaluated by immunofluorescent staining. The effect of IFN-γ treatment on the expression of PD-L1 was determined by WB. Animal experiments explored the effects of PD-L1 inhibitor in combination with mHSP/P treatment on tumors. Results: Tumor tissue carries a variety of HSP subtypes(HSP70, HSP90, Grp94). We successfully isolated sarcoma tissue-derived mHSP/P and Grp94/P tumor vaccines, which were identified by WB; flow cytometry analysis demonstrated their cytotoxicity. The levels of IFN-γ and TNF-α cytokines upon mHSP/P stimulation were significantly higher than that observed upon Grp94/P stimulation(P<0.05). The expression of PD-L1 on the surface of sarcoma cells increased with IFN-γ treatment. Animal experiments demonstrated that PD-L1 inhibitor in combination with mHSP/P significantly increased the immune response against tumor(P<0.05).Conclusions: Tumor-derived mHSP/P and Grp94/P can be used as tumor vaccines in animal models. The mHSP/P can elicit a stronger anti-tumor immune response than Grp94/P. IFN-γ stimulates the expression of PD-L1 in sarcoma cells, which results in immune evasion. The PD-L1 inhibitor in combination with mHSP/P increased the anti-tumor effect in the tumor microenvironment.
引文
[1]Baldin AV,Zamyatnin AA,Bazhin AV,et al.Advances in the development of anticancer HSP-based vaccines[J].Curr Med Chem,2018,doi:10.2174/0929867325666180129100015.[Epub ahead of print]
    [2]Ferrucci PF,Tosti G,Di Pietro A,et al.Newly identified tumor antigens as promising cancer vaccine targets for malignant melanoma treatment[J].Curr Top Med Chem,2012,12(1):11-31.
    [3]Kampinga HH,Hageman J,Vos MJ,et al.Guidelines for the nomenclature of the human heat shock proteins[J].Cell Stress Chaperones,2009,14(1):105-111.
    [4]De Maio A.Extracellular heat shock proteins,cellular export vesicles,and the stress observation system:a form of communication during injury,infection,and cell damage.It is never known how far a controversial finding will go!Dedicated to Ferruccio Ritossa[J].Cell Stress Chaperones,2011,16(3):235-249.
    [5]Multhoff G,Hightower LE.Distinguishing integral and receptorbound heat shock protein 70(Hsp70)on the cell surface by Hsp70-specific antibodies[J].Cell Stress and Chaperones,2011,16(3):251-255.
    [6]Jego G,Hazoume A,Seigneuric R,et al.Targeting heat shock proteins in cancer[J].Cancer Lett,2013,332(2):275-285.
    [7]Ji N,Zhang Y,Liu Y,et al.Heat shock protein peptide complex-96vaccination for newly diagnosed glioblastoma:a phase I,singlearm trial[J].JCI Insight,2018,3(10):pii:99145.
    [8]Weng D,Calderwood SK,Gong J.A novel heat shock protein 70-based vaccine prepared from dc-tumor fusion cells[J].Methods Mol Biol,2018,1709:359-369.
    [9]Ohaegbulam KC,Assal A,Lazar-Molnar E,et al.Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway[J].Trends Mol Med,2015,21(1):24-33.
    [10]Topalian SL,Taube JM,Anders RA,et al.Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J].Nat Rev Cancer,2016,16(5):275.
    [11]Kim AK,Gani F,Layman AJ,et al.Multiple immune suppressive mechanisms in fibrolamellar carcinoma[J].Cancer Immunol Res,2019,pii:canimm.0499.2018.
    [12]Stahl M,Goldberg AD.Immune checkpoint inhibitors in acute myeloid leukemia:novel combinations and therapeutic targets[J].Curr Oncol Rep,2019,21(4):37.
    [13]Ikwegbue PC,Masamba P,Mbatha LS,et al.Interplay between heat shock proteins,inflammation and cancer:a potential cancer therapeutic target[J].Am J Cancer Res,2019,9(2):242-249.
    [14]Calderwood SK.Heat shock proteins and cancer:intracellular chaperones or extracellular signalling ligands[J].Philos Trans R Soc Lond B Biol Sci,2018,373(1738).pii:20160524.
    [15]Gonzalez FE,Chernobrovkin A,Pereda C,et al.Proteomic identification of heat shock-induced danger signals in a melanoma cell lysate used in dendritic cell-based cancer immunotherapy[J].J Immunol Res,2018,2018:3982942.
    [16]Crouch BT,Gallagher J,Wang R,et al.Exploiting heat shock protein expression to develop a non-invasive diagnostic tool for breast cancer[J].Sci Rep,2019,9(1):3461.
    [17]Pawaria S,Binder RJ.CD91-dependent programming of T-helper cell responses following heat shock protein immunization[J].Nat Commun,2011,2:521.
    [18]Guo QY,Yuan M,Peng J,et al.Antitumor activity of mixed heat shock protein/peptide vaccine and cyclophosphamide plus interleukin-12 in mice sarcoma[J].J Exp Clin Cancer Res,2011,30(1):24-24.
    [19]Ribas A,Flaherty KT.Gauging the Long-Term Benefits of Ipilimumab in Melanoma[J].J Clin Oncol,2015,33(17):1865-1866.
    [20]Murshid A,Gong J,Calderwood SK.Purification,preparation,and use of chaperone-peptide complexes for tumor immunotherapy[J].Methods Mol Biol,2013,960:209-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700