复合材料机身壁板机械连接的强度分析与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STRESS ANALYSIS AND VERIFICATION TEST OF COMPOSITE FUSELAGE PANEL MECHANICALLY FASTENING
  • 作者:张绪 ; 汪厚冰 ; 于振波 ; 胡海威
  • 英文作者:ZHANG Xu;WANG Hou-bing;YU Zhen-bo;HU Hai-wei;Shanghai Aircraft Design and Research Institute;Aircraft Strength Research Institute of China;
  • 关键词:碳纤维复合材料 ; 机身壁板 ; 机械连接 ; 强度分析 ; 试验验证
  • 英文关键词:carbon fiber reinforced plastic(CFRP);;fuselage panel;;mechanically fastening;;stress analysis;;verification test
  • 中文刊名:BLGF
  • 英文刊名:Fiber Reinforced Plastics/Composites
  • 机构:上海飞机设计研究院;中国飞机强度研究所;
  • 出版日期:2019-07-28
  • 出版单位:玻璃钢/复合材料
  • 年:2019
  • 期:No.306
  • 语种:中文;
  • 页:BLGF201907015
  • 页数:7
  • CN:07
  • ISSN:11-2168/TU
  • 分类号:87-93
摘要
为了验证复合材料机身壁板机械连接设计及分析方法的合理性,设计了复合材料壁板纵向对缝连接零组件试验,并分别利用工程经验公式和有限元建模方法对试验件进行了强度分析。试验结果表明,复合材料壁板机械连接设计满足限制载荷和极限载荷设计要求,理论应变分布与试验应变分布一致,机械连接处紧固件传载比例与工程经验方法吻合,实际破坏载荷高于理论分析所预测的破坏载荷,表明强度分析方法合理且保守。
        A static test was designed to verify the composite fuselage panels mechanically-fastening design and analysis method. Stress analysis was carried out by experience formula and finite element modeling respectively. As shown by the test results, the mechanically fastening design can sustain the limited load and ultimate load. The theoretical strain complies with the test strain. Load ratio carried by the fasteners calculated by test data is in line with the experience data. The damage load level in the test was higher than the predicted level given by theoretical analysis, demonstrating that the selected method is rational and conservative.
引文
[1] CMH-17协调委员会.聚合物基复合材料-材料应用、设计和分析[M].汪海,沈真,译.上海:上海交通大学出版社,2015:493-507.
    [2] 高佳佳,楚珑晟.纤维增强树脂基复合材料连接技术研究现状与展望[J].玻璃钢/复合材料,2018(2):101-108.
    [3] Singer W L.Review of analysis methods for mechanically fastened joints in composites[R].NASA Report,1990.
    [4] Camanho P P,Lambert M.A design methodology for mechanically fastened joints in laminated composite materials[J].Composites Science and Technology,2006,66:3004-3020.
    [5] Federal Aviation Administration.A C20-107B:Composite Aircraft Structure[S].Washington D C:FAA,2009.
    [6] European Aviation Safety Agency.AMC 20-29:Composite Aircraft Structure[S].Koln:EASA,2010.
    [7] 郑晓玲.复合材料结构的适航符合性分析研究[J].民用飞机设计与研究,2017,124(1):1-6.
    [8] 樊则文,陈挺,张绪.民用飞机复合材料后机身结构适航验证方法[J].高科技纤维与应用,2018(2):36-40.
    [9] Whitehead R S.Composite wing/fuselage program[C].AFWAL-TR-883098,Vol 1-4,February,1989.
    [10] R B Aniversario,S T Harvey,J E McCarty,et al.Design,ancillary testing,analysis,and fabircation data for the advanced composite stabilizer for Boeing 737 aircraft[R].Hampton Virginia:NASA,1983.
    [11] Fawcett A,Trostle J,Ward S.777 empennage certification approach[C]//ICCM-11.Australia:1997.
    [12] MSC.MSC MD Nastran 2010 Quick Reference Guide[M].USA:MSC,2010.
    [13] 郑岩冰.复合材料多钉连接结构钉载分配比例研究[D].大连:大连理工大学,2017.
    [14] 谢鸣九.复合材料连接[M].上海:上海交通大学出版社,2011:199-244.
    [15] 杨旭,章怡宁,许希武.复合材料层板多钉机械连接强度计算方法[J].航空学报,1998,19(1):24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700