双层桨自吸式反应器的气含率特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of gas holdup in double-impeller self-inspirating reactor
  • 作者:高勇 ; 郝惠娣 ; 党睿 ; 高平强 ; 亢玉红 ; 王战辉
  • 英文作者:Gao Yong;Hao Huidi;Dang Rui;Gao Pingqiang;Kang Yuhong;Wang Zhanhui;School of Chemistry and Chemical Engineering,Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization Yulin University;School of Chemical Engineering,Northwest University;
  • 关键词:自吸式 ; 反应器 ; 气含率 ; 氧传质系数
  • 英文关键词:self-inspirating;;reactor;;gas holdup;;oxygen mass transfer coefficient
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:榆林学院化学与化工学院陕西省低变质煤洁净利用重点实验室;西北大学化工学院;
  • 出版日期:2019-05-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金资助项目(51762042);; 陕西省科技厅创新人才推进计划项目(2018KJXX-078);; 榆林市产学研合作项目(2016CXY-01)
  • 语种:中文;
  • 页:SYHG201905012
  • 页数:5
  • CN:05
  • ISSN:11-2361/TQ
  • 分类号:72-76
摘要
考察了下层桨型式及结构尺寸对双层桨自吸式反应器内气含率(ε)的影响,为研究氧传质系数提供理论指导。实验结果表明,六直叶圆盘桨+六叶上斜叶桨组合在输入功率相同时,吸气速率较大,ε较高,可以促进气液传质。ε随下层桨安装高度(L_3)、下层桨桨叶角度(θ)、下层桨叶片长度(L/D)、下层桨叶片宽度(W/D)的增大而减小,即当L_3=0.05 m,θ=30°,L/D=0.125,W/D=0.2时,下层桨具有较高的泵送效率和气体分散能力,可以提高氧传质系数。ε的关联式为ε∝L_3~(-0.11)θ~(-0.56)(L/D)~(-0.62)(W/D)~(-0.26),对于预测氧传质系数的主要影响因素具有重要的参考作用。
        In order to provide theoretical guidance for the study of oxygen mass transfer coefficient in a double-impeller self-inspirating reactor,the effects of lower impeller type and structure dimension on gas holdup(ε) were investigated. The results showed that the impeller combination of six straight blades disc turbine(6 SBDT)+six pitched blades upflow turbine(6 PBUT) has higher rate of gas induction at the same input power,therefore,it has a higher ε and can promote the gas-liquid mass transfer.The ε decreases with increases of the installing height(L_3),blades angle(θ),blades length(L/D) and blades width(W/D) of the lower impeller,that is,when L_3=0.05 m,θ=30°,L/D=0.125,W/D=0.2,the lower impeller has higher pumping efficiency and gas dispersing ability,thus oxygen mass transfer coefficient can be promoted. The correlation of the ε is ε∝L_3~(-0.11)θ~(-0.56)(L/D)~(-0.62)(W/D)~(-0.26),which is an important reference for predicting the main influencing factors of the oxygen transfer coefficient.
引文
[1]Saravanan K,Joshi J B.Fractional gas hold-up in gas inducing type of mechanically agitated contactors[J].Can J Chem Eng,1996,74:16-30.
    [2]刘庭耀.气-液两相搅拌釜流体行为的数值模拟研究[D].北京:北京科技大学,2017.
    [3]丁程兵,陈迁乔,钟秦.三种湍流模型下搅拌釜内气含率特性的模拟[J].化工进展,2013,32(11):2569-2573,2578.
    [4]肖欣,杨宁.基于EMMS模型的搅拌釜内气液两相流数值模拟[J].化工学报,2016,67(7):2732-2739.
    [5]郭扬扬.搅拌槽转轮半径及安装高度对气-液两相流影响的数值模拟[D].西安:西安理工大学,2018.
    [6]Laakkonen M,Honkanen M,Saarenrinne P,et al.Local bubble size distributions,gas-liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry[J].Chem Eng J,2005,109(1):37-47.
    [7]Xie Minghui,Xia Jianye,Zhou Zhen,et al.Flow pattern,mixing,gas holdup and mass transfer coefficient of tripleimpeller configurations in stirred tank bioreactors[J].Ind Eng Chem Res,2014,53(14):5941-5953.
    [8]郝惠娣,朱娜,秦佩,等.单层桨气液搅拌釜的气液分散特性[J].石油化工,2014,43(6):669-674.
    [9]范兵强,张洋,郑诗礼,等.气液搅拌体系中宏观气含率的预测[J].过程工程学报,2016,16(4):565-570.
    [10]郑海飞.带盘管的搅拌釜内气含率、传热特性及其应用研究[D].杭州:浙江大学,2017.
    [11]范芳怡.剪切变稀体系下宽粘度域搅拌器的气液分散及传质性能研究[D].杭州:浙江大学,2018.
    [12]高勇,严彪,胡军,等.双层桨自吸式气液搅拌釜内的功率准数[J].石油化工,2018,47(3):259-264.
    [13]高江超.自吸式反应器搅拌特性的实验研究和数值模拟[D].上海:华东理工大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700