基于迁移学习的类别级物体识别与检测研究与进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Status and Development of Transfer Learning Based Category-Level Object Recognition and Detection
  • 作者:张雪松 ; 庄严 ; 闫飞 ; 王伟
  • 英文作者:ZHANG Xue-Song;ZHUANG Yan;YAN Fei;WANG Wei;School of Control Science and Engineering, Dalian University of Technology;Software Technology Institute, Dalian Jiaotong University;
  • 关键词:迁移学习 ; 物体识别 ; 物体检测 ; 小规模数据集 ; 类不平衡数据集
  • 英文关键词:Transfer learning;;object recognition;;object detection;;small-scale dataset;;class imbalanced dataset
  • 中文刊名:MOTO
  • 英文刊名:Acta Automatica Sinica
  • 机构:大连理工大学控制科学与工程学院;大连交通大学软件学院;
  • 出版日期:2018-12-18 17:11
  • 出版单位:自动化学报
  • 年:2019
  • 期:v.45
  • 基金:国家自然科学基金(61503056,U1508208);; 辽宁省教育厅基本科研项目(JDL2017017)资助~~
  • 语种:中文;
  • 页:MOTO201907002
  • 页数:20
  • CN:07
  • ISSN:11-2109/TP
  • 分类号:20-39
摘要
类别级物体识别与检测属于计算机视觉领域的一个基础性问题,主要研究在图像或视频流中识别和定位出其中感兴趣的物体.在基于小规模数据集的类别级物体识别与检测应用中,模型过拟合、类不平衡和跨领域时特征分布变化等关键问题与挑战交织在一起.本文介绍了迁移学习理论的研究现状,对迁移学习理论解决基于小规模数据集的物体识别与检测中遇到的主要问题的研究思路和前沿技术进行了着重论述和分析.最后对该领域的研究重点和技术发展趋势进行了探讨.
        Category-level object recognition and detection are the fundamental problem in computer vision, which aims to solve the challenges of identifying and localizing interested objects in a static image or dynamic video stream. For smallscale data set based category-level object recognition and detection tasks, the key issues and challenges are interwoven,such as model overfitting, class imbalance and cross-domain feature distribution shift. In this survey, we first introduce the research status of transfer learning theory, and then we focus on discussing and analyzing of the research approaches and cutting-edge technologies of how to solve the challenging problems encountered in small-scale data set based object recognition and detection applications. The research emphases and prospective technical development trends are also proposed at the end of this paper.
引文
1 Szeliski R. Computer Vision:Algorithms and Applications. New York:Springer-Verlag, 2010. 1-28
    2 Pinheiro P O, Collobert R. From image-level to pixellevel labeling with convolutional networks. In:Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA:IEEE, 2015.1713-1721
    3 Grauman K, Leibe B. Visual object recognition. Synthesis Lectures on Artificial Intelligence and Machine Learning.San Rafael:Morgan&Claypool Publishers, 2011. 1-181
    4 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004,60(2):91-110
    5 Chen C C, Hsieh S L. Using binarization and hashing for efficient SIFT matching. Journal of Visual Communication and Image Representation, 2015, 30:86-93
    6 Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features(SURF). Computer Vision and Image Understanding, 2008, 110(3):346-359
    7 Donahue J, Jia Y Q, Vinyals O, Hoffman J, Zhang N,Tzeng E, et al. DeCAF:a deep convolutional activation feature for generic visual recognition. In:Proceedings of the 31th International Conference on International Conference on Machine Learning. Beijing, China:ACM, 2014.I-647-I-655
    8 Friedman J H, Bentley J L, Finkel R A. An algorithm for finding best matches in logarithmic expected time.ACM Transactions on Mathematical Software, 1977, 3(3):209-226
    9 Stewenius H, Gunderson S H, Pilet J. Size matters:exhaustive geometric verification for image retrieval. In:Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:Springer, 2012. 674-687
    10 Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet:a large-scale hierarchical image database. In:Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 248-255
    11 Xiao J X, Hays J, Ehinger K A, Oliva A, Torralba A. SUN database:large-scale scene recognition from abbey to zoo.In:Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE, 2010. 3485-3492
    12 Torralba A, Efros A A. Unbiased look at dataset bias. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA:IEEE, 2011. 1521-1528
    13 Tommasi T, Patricia N, Caputo B, Tuytelaars T. A deeper look at dataset bias. In:Proceedings of the 37th German Conference on Pattern Recognition. Aachen, Germany:Springer, 2015. 86-93
    14 Griffin G, Holub A, Perona P. Caltech-256 object category dataset, Technical Report CNSTR-2007-001, California Institute of Technology, USA, 2007.
    15 Zeng M, Ren J T. Domain transfer dimensionality reduction via discriminant kernel learning. In:Proceedings of the 16th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Kuala Lumpur,Malaysia:Springer-Verlag, 2012. 280-291
    16 Tao Jian-Wen, Chung F L, Wang Shi-Tong, Yao QiFu. Sparse label propagation:a robust domain adaptation learning method. Journal of Software, 2015, 26(5):977-1000(陶剑文, Chung F L,王士同,姚奇富.稀疏标签传播:一种鲁棒的领域适应学习方法.软件学报, 2015, 26(5):977-1000)
    17 Long Ming-sheng. Transfer Learning:Problems and Methods[Ph. D. dissertation], Tsinghua University, China, 2014(龙明盛.迁移学习问题与方法研究[博士学位论文],清华大学,中国, 2014)
    18 Taylor M E, Kuhlmann G, Stone P. Autonomous transfer for reinforcement learning. In:Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems. Estoril, Portugal:ACM, 2008.283-290
    19 Zhu Mei-Qiang, Cheng Yu-Hu, Li Ming, Wang Xue-Song,Feng Huan-Ting. A hybrid transfer algorithm for reinforcement learning based on spectral method. Acta Automatica Sinica, 2012, 38(11):1765-1776(朱美强,程玉虎,李明,王雪松,冯涣婷.一类基于谱方法的强化学习混合迁移算法.自动化学报, 2012, 38(11):1765-1776)
    20 Cheng B, Liu M X, Suk H I, Shen D G, Zhang D Q.Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior, 2015,9(4):913-926
    21 Long M S, Wang J M, Cao Y, Sun J G, Yu P S. Deep learning of transferable representation for scalable domain adaptation. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):2027-2040
    22 Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10):1345-1359
    23 Aytar Y. Transfer learning for object category detection[Ph. D. thesis], University of Oxford, UK, 2014
    24 Caruana R. Multitask learning. Machine Learning, 1997,28(1):41-75
    25 Zhang Y, Yang Q. A survey on multi-task learning. arXiv:1707.08114v1, 2017
    26 Ding Z M, Shao M, Fu Y. Incomplete multisource transfer learning. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(2):310-323
    27 Gu Xin, Wang Shi-Tong, Xu Min. A new crossmultidomain classification algorithm and its fast version for large datasets. Acta Automatica Sinica, 2014, 40(3):531-547(顾鑫,王士同,许敏.基于多源的跨领域数据分类快速新算法.自动化学报, 2014, 40(3):531-547)
    28 Zhang Q, Li H G, Zhang Y, Li M. Instance transfer learning with multisource dynamic TrAdaBoost. The Scientific World Journal, 2014, 2014:Article No. 282747
    29 Pan J, Wang X, Cheng Y, Cao G. Multi-source transfer ELM-based Q learning. Neurocomputing, 2014, 137:57-64
    30 Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning. Journal of Big Data, 2016, 3:Article No. 9
    31 Li X. Regularized Adaptation:Theory, Algorithms and Applications[Ph. D. thesis], University of Washington,USA, 2007
    32 Liu Jian-Wei, Sun Zheng-Kang, Luo Xiong-Lin. Review and research development on domain adaptation learning.Acta Automatica Sinica, 2014, 40(8):1576-1600(刘建伟,孙正康,罗雄麟.域自适应学习研究进展.自动化学报,2014, 40(8):1576-1600)
    33 Patel V M, Gopalan R, Li R N, Chellappa R. Visual domain adaptation:a survey of recent advances. IEEE Signal Processing Magazine, 2015, 32(3):53-69
    34 Shao H. Kernel methods for transfer learning to avoid negative transfer. International Journal of Computing Science and Mathematics, 2016, 7(2):190-199
    35 Ge L, Gao J, Ngo H, Li K, Zhang A D. On handling negative transfer and imbalanced distributions in multiple source transfer learning. Statistical Analysis and Data Mining, 2014, 7(4):254-271
    36 Mihalkova L, Huynh T, Mooney R J. Mapping and revising markov logic networks for transfer learning. In:Proceedings of the 22nd National Conference on Artificial Intelligence. Vancouver, Canada:AAAI, 2007. 608-614
    37 Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In:Proceedings of the 24th International Conference on Machine Learning. Corvalis, USA:ACM, 2007.193-200
    38 Eaton E, DesJardins M. Set-based boosting for instancelevel transfer. In:Proceedings of the 2009 IEEE International Conference on Data Mining Workshops. Miami,USA:IEEE, 2009. 422-428
    39 Kong S, Wang D H. Transfer heterogeneous unlabeled data for unsupervised clustering. In:Proceedings of the21 st International Conference on Pattern Recognition(ICPR2012). Tsukuba, Japan:IEEE, 2012. 1193-1196
    40 Kotzias D, Denil M, Blunsom P, De Freitas N. Deep multiinstance transfer learning. arXiv:1411.3128, 2014
    41 Zhang Qian, Li Ming, Wang Xue-Song, Cheng Yu-Hu,Zhu Mei-Qiang. Instance-based transfer learning for multisource domains. Acta Automatica Sinica, 2014, 40(6):1176-1183(张倩,李明,王雪松,程玉虎,朱美强.一种面向多源领域的实例迁移学习.自动化学报, 2014, 40(6):1176-1183)
    42 Zhou S, Schoenmakers G, Smirnov E, Peeters R, Driessens K, Chen S Q. Largest source subset selection for instance transfer. In:Proceedings of the 7th Asian Conference on Machine Learning. Hong Kong, China, 2015. 423-438
    43 Zhou S, Smirnov E N, Schoenmakers G, Peeters R. Conformal decision-tree approach to instance transfer. Annals of Mathematics and Artificial Intelligence, Switzerland:Springer, 2017, 81(1-2):85-104
    44 Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In:Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Sydney, Australia:ACM, 2006.120-128
    45 Daume III H. Frustratingly easy domain adaptation. In:Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic:ACL, 2007. 256-263
    46 Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22(2):199-210
    47 Tahmoresnezhad J, Hashemi S. Common feature extraction in multi-source domains for transfer learning. In:Proceedings of the 7th Conference on Information and Knowledge Technology(IKT). Urmia, Iran:IEEE, 2015. 1-5
    48 Xue S, Lu J, Zhang G Q, Xiong L. Heterogeneous feature space based task selection machine for unsupervised transfer learning. In:Proceedings of the 10th International Conference on Intelligent Systems and Knowledge Engineering(ISKE). Taipei, China:IEEE, 2015. 46-51
    49 Deng J, Fruhholz S, Zhang Z X, Schuller B. Recognizing emotions from whispered speech based on acoustic feature transfer learning. IEEE Access, 2017, 5:5235-5246
    50 Aytar Y, Zisserman A. Tabula rasa:model transfer for object category detection. In:Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona,Spain:IEEE, 2011. 2252-2259
    51 Zhou Y, Hospedales T M, Fenton N. When and where to transfer for Bayesian network parameter learning. Expert Systems with Applications, 2016, 55:361-373
    52 Tajbakhsh N, Shin J Y, Gurudu S R, Hurst R T, Kendall C B, Gotway M B, et al. Convolutional neural networks for medical image analysis:full training or fine tuning? IEEE Transactions on Medical Imaging, 2016, 35(5):1299-1312
    53 Segev N, Harel M, Mannor S, Crammer K, El-Yaniv R.Learn on source, refine on target:a model transfer learning framework with random forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9):1811-1824
    54 Mihalkova L, Mooney R J. Transfer learning from minimal target data by mapping across relational domains. In:Proceedings of the 21st International Jont Conference on Artificial Intelligence. Pasadena, CA:Morgan Kaufmann,2009. 1163-1168
    55 Myeong H, Lee K M. Tensor-based high-order semantic relation transfer for semantic scene segmentation. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA:IEEE, 2013.3073-3080
    56 Xia R, Zong C Q, Hu X L, Cambria E. Feature ensemble plus sample selection:domain adaptation for sentiment classification. IEEE Intelligent Systems, 2013, 28(3):10-18
    57 Mo Y, Zhang Z X, Wang Y H. A hybrid transfer learning mechanism for object classification across view. In:Proceedings of the 11th International Conference on Machine Learning and Applications. Boca Raton, USA:IEEE, 2012.226-231
    58 Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 06). New York, USA:IEEE, 2006.2169-2178
    59 Huang Kai-Qi, Ren Wei-Qiang, Tan Tie-Niu. A review on image object classification and detection. Chinese Journal of Computers, 2014, 36(6):1225-1240(黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述.计算机学报, 2014, 36(6):1225-1240)
    60 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S A, et al. ImageNet large scale visual recognition challenge.International Journal of Computer Vision, 2015, 115(3):211-252
    61 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In:Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA:Curran Associates Inc., 2012. 1097-1105
    62 Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In:Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014. 818-833
    63 Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA:IEEE, 2015. 1-9
    64 Simonyan K, Zisserman A. Very deep convolutional networks for large-Scale image recognition. arXiv:1409.1556v6, 2015
    65 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In:Proceedings of the 2016IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA:IEEE, 2016. 770-778
    66 Hu J, Shen L, Sun G. Squeeze-and-excitation networks.arXiv:1709.01507v2, 2017
    67 Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained partbased models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645
    68 Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158
    69 He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916
    70 Girshick R. Fast R-CNN. In:Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV).Santiago, Chile:IEEE, 2015. 1440-1448
    71 Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN:towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149
    72 He K M, Gkioxari G, Dollar P, Girshick P. Mask R-CNN.In:Proceedings of the 2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy:IEEE,2017. 2980-2988
    73 Redmon J, Divvala S K, Girshick R, Farhadi A. You only look once:unified, real-Time object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA:IEEE, 2016. 779-788
    74 Redmon J, Farhadi A. YOLO9000:better, faster, stronger.In:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,HI, USA:IEEE, 2017. 6517-6525
    75 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD:single shot MultiBox detector. In:Proceedings of the 14th European Conference on Computer Vision.Amsterdam, The Netherlands:Springer, 2016. 21-37
    76 Najibi M, Rastegari M, Davis L S. G-CNN:an iterative grid based object detector. In:Proceedings of the 2016IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA:IEEE, 2016. 2369-2377
    77 Kong T, Sun F C, Yao A B, Liu H P, Lu M, Chen Y R.RON:reverse connection with objectness prior networks for object detection. In:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, HI, USA:IEEE, 2017. 5244-5252
    78 Weiss G M. Mining with rarity:a unifying framework.ACM SIGKDD Explorations Newsletter, 2004, 6(1):7-19
    79 He H B, Garcia E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009,21(9):1263-1284
    80 Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1):63-77
    81 Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. SMOTE:synthetic minority over-sampling technique.Journal of Artificial Intelligence Research, 2002, 16(1):321-357
    82 Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C.Safe-Level-SMOTE:safe-level-synthetic minority oversampling technique for handling the class imbalanced problem. In:Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Bangkok, Thailand:Springer, 2009. 475-482
    83 Yang P Y, Yoo P D, Fernando J, Zhou B B, Zhang Z L, Zomaya A Y. Sample subset optimization techniques for imbalanced and ensemble learning problems in bioinformatics applications. IEEE Transactions on Cybernetics,2014, 44(3):445-455
    84 Al-Stouhi S, Reddy C K. Transfer learning for class imbalance problems with inadequate data. Knowledge and Information Systems, 2016, 48(1):201-228
    85 Weiss K R, Khoshgoftaar T M. Comparing transfer learning and traditional learning under domain class imbalance.In:Proceedings of the 16th IEEE International Conference on Machine Learning and Applications(ICMLA). Cancun,Mexico:IEEE, 2017. 337-343
    86 Wang K, Wu B. Power Equipment fault diagnosis model based on deep transfer learning with balanced distribution adaptation. In:Proceedings of the Advanced Data Mining and Applications. ADMA, Cham:Springer, 2018. 178-188
    87 Su K M, Hairston W D, Robbins K A. Adaptive thresholding and reweighting to improve domain transfer learning for unbalanced data with applications to EEG imbalance. In:Proceedings of the 15th IEEE International Conference on Machine Learning and Applications(ICMLA).Anaheim, CA, USA:IEEE, 2016. 320-325
    88 Zhang X S, Zhuang Y, Hu H S, Wang W. 3-D laser-based multiclass and multiview object detection in cluttered indoor scenes. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(1):177-190
    89 Hsu T M H, Chen W Y, Hou C A, Tsai Y H H, Yeh Y R, Wang Y C F. Unsupervised domain adaptation with imbalanced cross-domain data. In:Proceedings of the2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile:IEEE, 2015. 4121-4129
    90 Tsai Y H H, Hou C A, Chen W Y, Yeh Y R, Wang Y C F. Domain-constraint transfer coding for imbalanced unsupervised domain adaptation. In:Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, Arizona, USA:AAAI Press, 2016. 3597-3603
    91 Wang J D, Chen Y Q, Hao S J, Feng W J, Shen Z Q.Balanced distribution adaptation for transfer learning. In:Proceedings of the 2017 IEEE International Conference on Data Mining(ICDM). New Orleans, LA, USA:IEEE,2017. 1129-1134
    92 Zhang X S, Zhuang Y, Wang W, Pedrycz W. Transfer boosting with synthetic instances for class imbalanced object recognition. IEEE Transactions on Cybernetics, 2018,48(1):357-370
    93 Saenko K, Kulis B, Fritz M, Darrell T. Adapting visual category models to new domains. In:Proceedings of the 11th European Conference on Computer Vision. Crete, Greece:Springer-Verlag, 2010. 213-226
    94 Davis J V, Kulis B, Jain P, Sra S, Dhillon I S. Informationtheoretic metric learning. In:Proceedings of the 24th International Conference on Machine Learning. Corvalis,Oregon, USA:ACM, 2007. 209-216
    95 Hoffman J, Darrell T, Saenko K. Continuous manifold based adaptation for evolving visual domains. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014.867-874
    96 Xu J L, Ramos S, Vazquez D, Lopez A M. Domain adaptation of deformable part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(12):2367-2380
    97 Zhang X, Yu F X, Chang S F, Wang S J. Deep transfer network:unsupervised domain adaptation. arXiv:1503.00591, 2015.
    98 Yang X S, Zhang T Z, Xu C S, Yang M H. Boosted Multifeature learning for cross-domain transfer. ACM Transactions on Multimedia Computing, Communications, and Applications, 2015, 11(3):Article No. 35
    99 Long M, Cao Y, Wang J, Jordan M I. Unsupervised domain adaptation with residual transfer networks. In:Proceedings of the 32th International Conference on Machine Learning. Lille, France:ACM, 2015. 97-105
    100 Yan K, Kou L, Zhang D. Learning domain-invariant subspace using domain features and independence maximization. arXiv:1603.04535, 2016.
    101 Long M S, Zhu H, Wang J M, Jordan M I. Unsupervised domain adaptation with residual transfer networks.In:Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain:ACM Press2016. 136-144
    102 Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al. Domain-adversarial training of neural networks. The Journal of Machine Learning Research,2016, 17(1):2096-2030
    103 Long M S, Zhu H, Wang J M, Jordan M I. Deep transfer learning with joint adaptation networks. In:Proceedings of the 34th International Conference on Machine Learning.Sydney, Australia:ACM, 2017. 2208-2217
    104 Chen Y H, Li W, Sakaridis C, Dai D X, Van Gool L. Domain adaptive faster R-CNN for object detection in the wild. In:Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,Utah, USA:IEEE, 2018. 3339-3348
    105 Inoue N, Furuta R, Yamasaki T, Aizawa K. Cross-domain weakly-supervised object detection through progressive domain adaptation. In:Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, Utah, USA:IEEE, 2018. 5001-5009. DOI:10 .1109/CVPR.2018.00525
    106 Kulis B, Saenko K, Darrell T. What you saw is not what you get:domain adaptation using asymmetric kernel transforms. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, RI, USA:IEEE, 2011. 1785-1792
    107 Li W, Duan L X, Xu D, Tsang I W. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1134-1148
    108 Xiao M, Guo Y H. Feature space independent semisupervised domain adaptation via kernel matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1):54-66
    109 Tsai Y H H, Yeh Y R, Wang Y C F. Learning cross-domain landmarks for heterogeneous domain adaptation. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA:IEEE, 2016. 5081-5090
    110 Zhao P L, Hoi S C H, Wang J L, Li B. Online transfer learning. Artificial Intelligence, 2014, 216:76-102
    111 Zhan Y S, Taylor M E. Online transfer learning in reinforcement learning domains. arXiv:1507.00436, 2015.
    112 Zhang X S, Zhuang Y, Wang W, Pedrycz W. Online feature transformation learning for cross-domain object category recognition. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7):2857-2871
    113 Ghifary M, Kleijn W B, Zhang M J, Balduzzi D. Domain generalization for object recognition with multi-task autoencoders. In:Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE, 2015. 2551-2559
    114 Fan J P, Zhao T Y, Kuang Z Z, Zheng Y, Zhang J, Yu J,et al. HD-MTL:hierarchical deep multi-task learning for large-scale visual recognition. IEEE Transactions on Image Processing, 2017, 26(4):1923-1938
    115 Torralba A, Murphy K P, Freeman W T. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):854-869
    116 Li X, Zhao L M, Wei L N, Yang M H, Wu F, Zhuang Y T,et al. Deepsaliency:multi-task deep neural network model for salient object detection. IEEE Transactions on Image Processing, 2016, 25(8):3919-3930
    117 Kalogeiton V, Weinzaepfel P, Ferrari V, Schmid C. Joint learning of object and action detectors. In:Proceedings of the 2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy:IEEE, 2017. 2001-2010
    118 Chu W Q, Liu Y, Shen C, Cai D, Hua X S. Multi-task vehicle detection with region-of-interest voting. IEEE Transactions on Image Processing, 2018, 27(1):432-441
    119 Lu X, Wang Y N, Zhou X Y, Zhang Z J, Ling Z G. Traffic sign recognition via multi-modal tree-structure embedded multi-task learning. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4):960-972
    120 Zhang Y X, Du B, Zhang L P, Liu T L. Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):894-906
    121 Zhang T Z, Xu C S, Yang M H. Multi-task correlation particle filter for robust object tracking. In:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, HI, USA:IEEE,2017. 4819-4827
    122 Lim J J, Salakhutdinov R, Torralba A. Transfer learning by borrowing examples for multiclass object detection. In:Proceedings of 24th International Conference on Neural Information Processing Systems. Granada, Spain:ACM,2011. 118-126
    123 Malisiewicz T, Gupta A, Efros A A. Ensemble of exemplarSVMs for object detection and beyond. In:Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. 89-96
    124 Aytar Y, Zisserman A. Enhancing exemplar SVMs using part level transfer regularization. In:Proceedings of the2012 British Machine Vision Conference. Guildford, UK:BMVA, 2012. 1-11
    125 Aytar Y, Zisserman A. Part level transfer regularization for enhancing exemplar SVMs. Computer Vision and Image Understanding, 2015, 138:114-123
    126 Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014. 1717-1724
    127 Hoffman J, Gupta S, Leong J, Guadarrama S, Darrell T.Cross-modal adaptation for RGB-D detection. In:Proceedings of the 2016 IEEE International Conference on Robotics and Automation(ICRA). Stockholm, Sweden:IEEE, 2016. 5032-5039
    128 Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In:Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Quebec, Canada:ACM,2014. 3320-3328
    129 Tang Y J, Wu B, Peng L R, Liu C S. Semi-supervised transfer learning for convolutional neural network based Chinese character recognition. In:Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition(ICDAR). Kyoto, Japan:IEEE, 2017.441-447
    130 Christodoulidis S, Anthimopoulos M, Ebner L, Christe A,Mougiakakou S. Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1):76-84
    131 Kalal Z, Mikolajczyk K, Matas J. Tracking-learningdetection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422
    132 Hare S, Saffari A, Torr P H S. Struck:structured output tracking with kernels. In:Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona,Spain:IEEE, 2011. 263-270
    133 Milan A, Schindler K, Roth S. Multi-target tracking by discrete-continuous energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(10):2054-2068
    134 Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In:Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE, 2010. 2544-2550
    135 Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In:Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:Springer, 2012.702-715
    136 Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37 (3):583-596
    137 Danelljan M, Khan F S, Felsberg M, Van De Weijer J.Adaptive color attributes for real-time visual tracking. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA:IEEE,2014. 1090-1097
    138 Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In:Proceedings of the26 th International Conference on Neural Information Processing Systems. Lake Tahoe, USA:ACM, 2013. 809-817
    139 Wang N Y, Li S Y, Gupta A, Yeung D Y. Transferring rich feature hierarchies for robust visual tracking. arXiv:1501.04587v2, 2015.
    140 Wang L J, Ouyang W L, Wang X G, Lu H C. Visual tracking with fully convolutional networks. In:Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile:IEEE, 2015. 3119-3127
    141 Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In:Proceedings of the2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA:IEEE, 2016.4293-4302
    142 Cui Z, Xiao S T, Feng J S, Yan S C. Recurrently targetattending tracking. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA:IEEE, 2016. 1449-1458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700