花花柴脂肪酸合成相关基因KcFabZ的克隆及分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and Analysis of KcFabZ Gene Related to Fatty Acid Synthesis in Karelinia caspia
  • 作者:王磊 ; 王彦芹
  • 英文作者:Wang Lei;Wang Yanqin;College of Life Sciences,Tarim University;
  • 关键词:高温 ; 花花柴 ; 脂肪酸 ; FabZ ; qRT-PCR
  • 英文关键词:high temperature;;Karelinia capsia;;fatty acid;;FabZ;;qRT-PCR
  • 中文刊名:TLML
  • 英文刊名:Journal of Tarim University
  • 机构:塔里木大学生命科学学院;
  • 出版日期:2019-06-15
  • 出版单位:塔里木大学学报
  • 年:2019
  • 期:v.31
  • 基金:国家自然基金项目“基于RNA-seq沙漠花花柴高温胁迫响应分子机理研究”(31460071);; 塔里木大学研究生研究生创新项目“脂类代谢在花花柴耐高温中的作用”(TDGRI201715)
  • 语种:中文;
  • 页:TLML201902004
  • 页数:7
  • CN:02
  • ISSN:65-1258/Z
  • 分类号:28-34
摘要
脂肪酸是生物体内的重要能源物质。为深入分析花花柴脂肪酸合成相关基因FabZ(β羟酰基ACP脱水酶)的结构与功能,通过PCR克隆获得该基因核苷酸序列,命名为KcFabZ。对该基因的编码蛋白进行了生物信息学分析,并利用荧光定量PCR分析其在高温处理下的表达模式。结果显示:KcFabZ基因全长为669 bp,编码232个氨基酸。定位在叶绿体中;系统发育分析结果显示KcFabZ与菊科莴苣中的该基因同源性达到89%;根据NCBI中保守结构域预测,KcFabZ为hot_dog超家族功能基因,具有典型的α+β‘hot_dog’折叠;荧光定量PCR结果显示,KcFabZ表现在高温处理下随着处理时间的延长表达量先升高后降低,高温处理8 h时表达量达到最大值,为对照的19. 54倍,以上研究结果表明,KcFabZ可能与花花柴对高温胁迫的响应相关。
        Fatty acids are important energy substances in living organisms. In order to deeply analyze the structure and function of fatty acid synthesis related gene FabZ of Karelinia capsia, The nucleotide sequence of the gene was obtained by PCR cloning and named for KcFabZ. The bioinformatics analysis of the encoded protein of the gene was carried out, and its expression pattern under high temperature treatment was explored by real-time PCR. Results showed that the length of KcFabZ gene was 669 bp and coded 232 amino acids, which was localized in chloroplasts. The phylogenetic results showed that Kc FabZ shared 89% homology with Lactuca sativa Linn. According to the conserved domain prediction in NCBI, KcFabZ is a hot_dog superfamily functional gene, with typical α+β'hot_dog'folding. The results of real-time PCR showed that the expression of KcFabZ increased first and then decreased with the treatment time under high temperature treatment. The expression reached the maximum at 8 h after high temperature treatment,which was 19.54 times of the control. The above results indicate that KcFabZ may be related to The response of Karelinia capsia to high temperature stress is related.
引文
[1]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报, 2000, 17(6):481-491.
    [2] Heath R J, Rock C O. Roles of the FabA and FabZ-Hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis[J]. Journal of Biological Chemistry, 1996, 271(44):27795-27801.
    [3] Wang H, Cronan J. Only one of the two annotated Lactococcus lactis fabG genes encodes a functionalβ-ketoacyl-acyl carrier protein reductase[J]. Biochemistry, 2004, 43(37):11782-9.
    [4] Liu W, Luo C, Han C, et al. A new beta-hydroxyacyl-acyl carrier protein dehydratase(FabZ)from helicobacter pylori:Molecular cloning, enzymatic characterization, and structural modeling[J]. Biochemical&Biophysical Research Communications, 2005, 333(4):1078-1086.
    [5]刘丽,王玉美,赵彦朋,等.棉花脂肪酸合成酶基因GhKAR和GhENR表达载体构建及其功能初探[J].棉花学报, 2016, 28(6):527-537.
    [6]周连玉,李园媛,王文妮,等.植物响应温度胁迫的代谢组学研究进展[J].山西农业科学, 2017, 45(2):317-320.
    [7] Djanaguiraman M, Prasad PVV. Ethylene production under high temperature stress causes premature leaf senescence in soybean[J]. Functional Plant Biology, 2010, 37(11):1071.
    [8] Vollenweider P, GünthardtGoerg M S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage[J]. Environmental Pollution, 2006, 137(3):455-465.
    [9] Bita C E, Gerats T. Plant tolerance to high temperature in a changing environment:scientific fundamentals and production of heat stress-tolerant crops[J]. Frontiers in Plant Science, 2013, 4(4):273.
    [10]章英才,闫天珍.花花柴叶片解剖结构与生态环境关系的研究[J].宁夏农学院学报, 2003, 24(1):31-33.
    [11]王彦芹.荒漠植物H+-Ppase基因的系统发育分析及SaVP1和KcNHX1基因的功能鉴定[D].华中农业大学博士毕业论文, 2013.
    [12]王彦芹,石新建,李志军.沙漠植物花花柴幼苗对高温耐受性评价[J].生物技术通报, 2017, 33(4):157-163.
    [13] Bourgis F, Kilaru A, Cao X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J].Proceedings of the National Academy of Sciences, 2011,108(30):12527-12532.
    [14] Tai H H, Williams M, Iyengar A, et al. Regulation of theβ-hydroxyacyl ACP dehydratase gene of Picea mariana by alternative splicing[J]. Plant Cell Reports, 2007, 26(1):105-113.
    [15] Zhu X, Xiong L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J]. Proceedings of the National Academy of Sciences, 2013, 110(44):17790-17795.
    [16]吴洪启,罗文巧,赵帅,等.干旱胁迫对番茄叶片蜡质积累的影响[J].西北农林科技大学学报(自然科学版),2017(7).
    [17] Wolter F P, Schmidt R, Heinz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids[J]. The Embo Journal, 1992, 11(13):4685-4692.
    [18] Falcone D L, Ogas J P, Somerville C R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition[J]. BMC Plant Biology, 2004, 4(1):17-17.
    [19] Horiguchi G, Fuse T, Kawakami N, et al. Temperature﹤dependent translational regulation of the ERω-3 fatty acid desaturase gene in wheat root tips[J]. The Plant Journal,2000, 24(6):9.
    [20] Murakami Y, Tsuyama M, Kobayashi Y, et al. Trienoic fatty acids and plant tolerance of high temperature[J]. Plant&Cell Physiology, 2000, 41(5452):476-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700