水产生物基因组研究进展与趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress and perspective of the genome research in aquatic organisms
  • 作者:郑先虎 ; 匡友谊 ; 吕伟华 ; 栾培贤 ; 孙志鹏 ; 鲁翠云 ; 孙效文
  • 英文作者:ZHENG Xianhu;KUANG Youyi;Lü Weihua;LUAN Peixian;SUN Zhipeng;LU Cuiyun;SUN Xiaowen;National and Local Joint Engineering Laboratory for Freshwater Fish Breeding,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs,Heilongjiang River Fisheries Research Institute,Chinese Academy of Fishery Sciences;
  • 关键词:水产生物 ; 基因组 ; 下一代测序
  • 英文关键词:aquatic organisms;;genome;;next generation sequencing
  • 中文刊名:SCKX
  • 英文刊名:Journal of Fisheries of China
  • 机构:中国水产科学研究院黑龙江水产研究所淡水鱼类育种国家地方联合工程实验室农业农村部淡水水产生物技术与遗传育种重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:水产学报
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金(31672655,31602150)~~
  • 语种:中文;
  • 页:SCKX201901002
  • 页数:21
  • CN:01
  • ISSN:31-1283/S
  • 分类号:17-37
摘要
本文综述了水产生物基因组研究相关技术的发展历程和关键技术的应用。以二代测序技术的出现为分界点,首先回顾了早期水产养殖生物在遗传学和分子生物学方面的研究结果,以及为开展全基因组测序所做的相关基础研究,然后重点介绍了二代测序技术应用于水产生物全基因组测序和经济性状遗传基础解析的研究进展,最后展望了水产生物基因组研究发展趋势。水产生物经济性状遗传机制高度复杂,从全基因组角度阐明其遗传机制仍有很多难题,但基因决定性状是生物学法则之一,探索这一过程的奥秘引人入胜。
        In this paper,the development and application of related technologies in aquatic genome research are reviewed.Taking the appearance of the next-generation sequencing(NGS)technology as a demarcation point,we firstly looked back to the researches of genetics and molecular biology of aquatic organisms in the early stages,and the basic researches for the whole-genome sequencing.And then we emphatically introduced the development of the NGS technology application for whole-genome sequencing and economic traits analysis.At last,the development trend of aquatic organisms whole-genome researches is prospected.The genetic mechanism of economic traits of aquatic organisms is highly complex,thus there are still a lot of difficulties in explaining the genetic mechanism at the whole-genome level.However,it is a basic law that trait is determined by genes,so the exploration will still be fascinating.
引文
[1] Maxam A M, Gilbert W. A new method for sequencing DNA[J]. Proceedings of the National Academy of Sciences of the United States of America,1977, 74(2):560-564.
    [2] Sanger F,Nicklen S,Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12):5463-5467.
    [3] Martin G R. The roles of FGFs in the early development of vertebrate limbs[J]. Genes&Development,1998, 12(11):1571-1586.
    [4] Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297(5585):1301-1310.
    [5] Metzker M L. Sequencing technologies-the next generation[J]. Nature Reviews Genetics,2010, 11(1):31-46.
    [6] Pushkarev D, Neff N F, Quake S R. Single-molecule sequencing of an individual human genome[J]. Nature Biotechnology, 2009, 27(9):847-850.
    [7] Li R Q, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome[J]. Nature,2010,463(7279):311-317.
    [8] Treffer R, Deckert V. Recent advances in singlemolecule sequencing[J]. Current Opinion in Biotechnology, 2010, 21(1):4-11.
    [9] Kulski J K. Next-generation sequencing-an overview of the history,tools,and"omic"applications[M]//Kulski J K. Next Generation Sequencing-Advances,Applications and Challenges. InTech, 2016:3-60.
    [10] Skinner D M, Beattie W G, Blattne F R, et al. Repeat sequence of a hermit crab satellite deoxyribonucleic acid is(-T-A-G-G-)n.(-A-T-C-C-)n[J]. Biochemistry,1974, 13(19):3930-3937.
    [11] Kocher T D, Lee W J, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the tilapia(Oreochromis niloticus)[J]. Genetics, 1998, 148(3):1225-1232.
    [12] Young W P, Wheeler P A, Coryell V H, et al. A detailed linkage map of rainbow trout produced using doubled haploids[J]. Genetics, 1998, 148(2):839-850.
    [13]魏东旺,楼允东,孙效文,等.鲤鱼微卫星分子标记的筛选[J].动物学研究,2001,22(3):238-241.Wei D W, Lou Y D, Sun X W, et al. Isolation of microsatellite markers in the common carp(Cyprinus carpio)[J]. Zoological Research, 2001, 22(3):238-241(in Chinese).
    [14]徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选[J].海洋与湖沼,2001,32(3):255-259.Xu P, Zhou L H, Xiang F H. Isolating microsatellite DNA of Chinese shrimp Penaeus chinensis[J].Oceanologia et Limnologia Sinica,2001,32(3):255-259.
    [15]Serapion J,Kucuktas H,Feng J N,et al. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish(Ictalurus punctatus)[J]. Marine Biotechnology, 2004, 6(4):364-377.
    [16]万海伟,杜立新.表达序列标签(EST)在基因组学研究中的应用[J].生物技术通报,2004(1):35-38, 34.Wan H W, Du L X. Application of EST in the study of genomics[J]. Biotechnology Bulletin,2004(1):35-38,34(in Chinese).
    [17]张晓峰,杨晶,孙效文.基于EST序列的鲤鱼生长相关SNP发掘[J].水产学杂志,2009, 22(4):1-7.Zhang X F, Yang J, Sun X W. Exploitation of SNPs related to growth traits of common carp(Cyprinus carpio L.)based on EST sequences[J]. Chinese Journal of Fisheries,2009, 22(4):1-7(in Chinese).
    [18] Zhang Y A, Zou J, Chang C I, et al. Discovery and characterization of two types of liver-expressed antimicrobial peptide 2(LEAP-2)genes in rainbow trout[J]. Veterinary Immunology and Immunopathology, 2004, 101(3-4):259-269.
    [19] von Schalburg K R, Rise M L, Cooper G A, et al. Fish and chips:various methodologies demonstrate utility of a 16,006-gene salmonid microarray[J]. BMC Genomics,2005, 6:126.
    [20] Naruse K, Tanaka M, Mita K, et al. A medaka gene map:the trace of ancestral vertebrate protochromosomes revealed by comparative gene mapping[J]. Genome Research,2004, 14(5):820-828.
    [21] Ng S H S, Artieri C G, Bosdet I E, et al. A physical map of the genome of Atlantic salmon, Salmo salar[J].Genomics, 2005, 86(4):396-404.
    [22]汤飞宇,张天真.重叠群物理图谱的构建及其应用[J].基因组学与应用生物学,2009, 28(1):195-201.Tang F Y, Zhang T Z. Construction and application of large-insert clones-based physical map[J]. Genomics and Applied Biology,2009, 28(1):195-201(in Chinese).
    [23] Xu P, Wang S L, Liu L, et al. A BAC-based physical map of the channel catfish genome[J]. Genomics, 2007,90(3):380-388.
    [24] Palti Y, Luo M C, Hu Y Q, et al. A first generation BAC-based physical map of the rainbow trout genome[J]. BMC Genomics,2009, 10:462.
    [25] Xu P, Wang J, Wang J T, et al. Generation of the first BAC-based physical map of the common carp genome[J]. BMC Genomics,2011,12:537.
    [26] Lewin H A, Larkin D M, Pontius J, et al. Every genome sequence needs a good map[J]. Genome Research,2009, 19(11):1925-1928.
    [27]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000, 7(1):1-5.Sun X W, Liang L Q. A genetic linkage map of common carp[J]. Journal of Fishery Sciences of China,2000, 7(1):1-6(in Chinese).
    [28] Sun X W, Liang L Q. A genetic linkage map of common carp(Cyprinus carpio L.)and mapping of a locus associated with cold tolerance[J]. Aquaculture,2004,238(1-4):165-172.
    [29] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the pacific oyster Crassostrea gigas[J]. Genetics, 2004, 168(1):351-362.
    [30] Nichols K M, Young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout(Oncorhynchus mykiss)[J]. Animal Genetics, 2003,34(2):102-115.
    [31] Lee B Y, Lee W J, Streelman J T, et al. A secondgeneration genetic linkage map of tilapia(Oreochromis spp.)[J]. Genetics, 2005, 170(1):237-244.
    [32] Moen T, Hayes B, Baranski M, et al. A linkage map of the Atlantic salmon(Salmo salar)based on ESTderived SNP markers[J]. BMC Genomics, 2008, 9:223.
    [33] Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella)based on microsatellites and SNPs[J]. BMC Genomics, 2010,11:135.
    [34] Jackson T R, Ferguson M M, Danzmann R G, et al.Identification of two QTL influencing upper temperature tolerance in three rainbow trout(Oncorhynchus mykiss)half-sib families[J]. Heredity,1998, 80(2):143-151.
    [35] Yue G H. Recent advances of genome mapping and marker-assisted selection in aquaculture[J]. Fish and Fisheries,2014, 15(3):376-396.
    [36] Laghari M Y, Lashari P, Zhang X F, et al. QTL mapping for economically important traits of Common carp(Cyprinus carpio L.)[J]. Journal of Applied Genetics,2015, 56(1):65-75.
    [37] Derayat A, Houston R D, Guy D R, et al. Mapping QTL affecting body lipid percentage in Atlantic salmon(Salmo salar)[J]. Aquaculture, 2007, 272(S1):S250-S251.
    [38] Baranski M,Moen T,Vage D I. Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon(Salmo salar)[J]. Genetics Selection Evolution,2010, 42:17.
    [39] Kuang Y Y, Zheng X H, Lv W H, et al. Mapping quantitative trait loci for flesh fat content in common carp(Cyprinus carpio)[J]. Aquaculture, 2014, 435:100-105.
    [40]李鸥,曹顶臣,张研,等.利用EST-SSR分子标记研究鲤的饲料转化率性状[J].水产学报,2009, 33(4):624-631.Li O, Cao D C, Zhang Y, et al. Studies on feed conversion ratio trait of common carp(Cyprinus carpio L.)using EST-SSR marker[J]. Journal of Fisheries of China, 2009, 33(4):624-631(in Chinese).
    [41]张丽博,张晓峰,曹.顶臣,等.利用SSR及EST标记对鲤饲鱼饲料转化率的OTL分析[J].农业生物技术学报,2010, 18(5):963-967.Zhang L B, Zhang X F, Cao D C, et al. QTL analysis related to feed conversion efficiency in common carp(Cyprinus carpio)using SSR and EST markers[J].Journal of Agricultural Biotechnology,2010,18(5):963-967(in Chinese).
    [42]王宣朋,张晓峰,李文升,等.鲤饲料转化率性状的QTL定位及遗传效应分析[J].水生生物学报,2012,36(2):177-196.Wang X P, Zhang X F, Li W S, et al. Mapping and genetic effect analysis on quantitative trait loci related to feed conversion ratio of common carp(Cyprinus carpio L.)[J]. Acta Hydrobiologica Sinica, 2012, 36(2):177-196(in Chinese).
    [43] Barroso R M, Wheeler P A, Lapatra S E, et al. QTL for IHNV resistance and growth identified in a rainbow(Oncorhynchus mykiss)×yellowstone cutthroat(Oncorhynchus clarki bouvieri)trout cross[J].Aquaculture,2008, 277(3-4):156-163.
    [44] Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder(Paralichthys olivaceus)[J]. Aquaculture, 2006, 254(1-4):203-210.
    [45] Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder(Paralichthys olivaceus)[J]. Aquaculture,2007, 272(1-4):291-295.
    [46] Xu T J, Chen S L, Ji X S, et al. MHC polymorphism and disease resistance to Vibrio anguillarum in 12selective Japanese flounder(Paralichthys olivaceus)families[J]. Fish&Shellfish Immunology, 2008, 25(3):213-221.
    [47] Yu H Y, He Y, Wang X X, et al. Polymorphism in a serine protease inhibitor gene and its association with disease resistance in the eastern oyster(Crassostrea virginica Gmelin)[J]. Fish&Shellfish Immunology,2011,30(3):757-762.
    [48] Kasahara M, Naruse K, Sasaki S, et al. The medaka draft genome and insights into vertebrate genome evolution[J]. Nature,2007,447(7145):714-719.
    [49] Howe K, Clark M D, Torroja C F, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503.
    [50] Kettleborough R N W, Busch-Nentwich E M, Harvey S A, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function[J]. Nature,2013, 496(7446):494-497.
    [51] Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system[J]. Nature, 2011, 477(7363):207-210.
    [52] Malmstrom M, Matschiner M, Terresen O K, et al.Evolution of the immune system influences speciation rates in teleost fishes[J]. Nature Genetics,2016, 48(10):1204-1210.
    [53] Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates[J].Nature Communications, 2014, 5:3657.
    [54] Brawand D, Wagner E C, Li Y I, et al. The genomic substrate for adaptive radiation in African cichlid fish[J]. Nature,2014, 513(7518):375-381.
    [55] Liu Z J, Liu S K, Yao J, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts[J]. Nature Communications,2016, 7:11757.
    [56] Lien S, Koop B F, Sandve S R, et al. The Atlantic salmon genome provides insights into rediploidization[J]. Nature, 2016, 533(7602):200-205.
    [57] Brawand D, Wagner C E, Li Y I, et al. The genomic substrate for adaptive radiation in African cichlid fish[J]. Nature, 2014, 513(7518):375-381.
    [58] Tine M, Kuhl H, Gagnaire P A, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation[J]. Nature Communications, 2014, 5:5770.
    [59] Nakamura Y, Mori K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of pacific bluefin tuna[J].Proceedings of the National Academy of Sciences of the United States of America,2013, 110(27):11061-11066.
    [60] Figueras A, Robledo D, Corvelo A, et al. Whole genome sequencing of turbot(Scophthalmus maximus;Pleuronectiformes):a fish adapted to demersal life[J].DNA Research, 2016, 23(3):181-192.
    [61] Braasch I, Gehrke A R, Smith J J, et al. The spotted gar genome illuminates vertebrate evolution and facilitateshuman-teleost comparisons[J]. Nature Genetics, 2016,48(4):427-437.
    [62] Vij S, Kuhl H, Kuznetsova I S, et al. Chromosomallevel assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding[J]. PLOS Genetics, 2016, 12(4):e1005954.
    [63] Zhang G F, Fang X D, Guo X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature, 2012, 490(7418):49-54.
    [64] Chen S L, Zhang G J, Shao C W, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle[J]. Nature Genetics, 2014, 46(3):253-260.
    [65] Xu P, Zhang X F, Wang X M, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio[J] Nature Genetics, 2014, 46(11):1212-1219.
    [66] Wu C W, Zhang D, Kan M Y, et al. The draft genome of the large yellow croaker reveals well-developed innate immunity[J]. Nature Communication, 2014, 5:5227.
    [67] Ao J Q, Mu Y N, Xiang L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS Genetics,2015,11(4):e1005118.
    [68] Wang Y P, Lu Y, Zhang Y, et al. The draft genome of the grass carp(Ctenopharyngodon idellus)provides insights into its evolution and vegetarian adaptation[J].Nature Genetics,2015,47(6):625-631.
    [69] Shao C W, Bao B L, Xie Z Y, et al. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry[J]. Nature Genetics,2017, 49(1):119-124.
    [70] Xu J, Li J T, Jiang Y L, et al. Genomic basis of adaptive evolution:the survival of Amur ide(Leuciscus waleckii)in an extremely alkaline environment[J].Molecular Biology and Evolution, 2017, 34(1):145-159.
    [71] Yang J X, Chen X L, Bai J, et al. The Sinocyclocheilus cavefish genome provides insights into cave adaptation[J]. BMC Biology, 2016, 14:1.
    [72] Lin Q, Fan S H, Zhang Y H, et al. The seahorse genome and the evolution of its specialized morphology[J]. Nature, 2016, 540(7633):395-399.
    [73] Ye N H, Zhang X W, Miao M, et al. Saccharina genomes provide novel insight into kelp biology[J].Nature Communications,2015, 6:6986.
    [74] Wang S, Zhang J B, Jiao W Q, et al.Scallop genome provides insights into evolution of bilaterian karyotype and development[J]. Nature Ecology&Evolution,2017, 1(5):120.
    [75] Gong G R, Dan C, Xiao S J, et al. Chromosomal-level assembly of yellow catfish genome using thirdgeneration DNA sequencing and Hi-C analysis[J].GigaScience,2018, 7(11):giy120.
    [76] Shao C W, Li C, Wang N, et al. Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus[J]. GigaScience, 2018, 7(11):giy114.
    [77] Liu H, Chen C H, Gao Z X, et al. The draft genome of blunt snout bream(Megalobrama amblycephala)reveals the development of intermuscular bone and adaptation to herbivorous diet[J]. GigaScience,2017,6(7):1=13.
    [78] Xu J, Bian C, Chen K C, et al. Draft genome of the Northern snakehead, Channa argus[J]. GigaScience,2017, 6(4):1-5.
    [79] Gao Y, Gao Q, Zhang H, et al. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus[J]. DNA Research, 2014, 21(6):627-637.
    [80] Song L S, Bian C, Luo Y J, et al. Draft genome of the Chinese mitten crab, Eriocheir sinensis[J].GigaScience,2016, 5:5.
    [81] Zhang X J, Sun L N, Yuan J B, et al. The sea cucumber genome provides insights into morphological evolution and visceral regeneration[J]. PLoS Biology,2017,15(10):e2003790.
    [82] Shin S C, Ahn D H, Kim S J, et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment[J].Genome Biology,2014, 15(9):468.
    [83] Rondeau E B, Minkley D R, Leong J S,et al. The genome and linkage map of the northern pike(Esox lucius):conserved synteny revealed between the salmonid sister group and the Neoteleostei[J]. PLoS One,2014, 9(7):e102089.
    [84] Austin C M, Tan M H, Croft L J, et al. Whole genome sequencing of the Asian arowana(Scleropages formosus)provides insights into the evolution of ray-finned fishes[J]. Genome Biology and Evolution, 2015,7(10):2885-2895.
    [85] Xu T J, Xu G L, Che R B, et al. The genome of the miiuy croaker reveals well-developed innate immune and sensory systems[J]. Scientific Reports, 2016, 6:21902.
    [86] AlMomin S, Kumar V, Al-Amad S, et al. Draft genome sequence of the silver pomfret fish, Pampus argenteus[J]. Genome, 2016, 59(1):51-58.
    [87] Liu H P, Liu Q Y, Chen Z Q, et al. Draft genome of Glyptosternon maculatum, an endemic fish from Tibet plateau[J]. GigaScience,2018, 7(9):giy 104.
    [88] Lamichhaney S, Barrio A M, Rafati N, et al.Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(47):19345-19350.
    [89] Hohenlohe P A, Day M D, Amish S J, et al. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing[J]. Molecular Ecology, 2013, 22(11):3002-3013.
    [90] Housto R D, Taggart J B, Cezard T, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon(Salmo salar)[J]. BMC Genomics,2014, 15:90.
    [91] Liu S K, Sun L Y, Li Y, et al. Development of the catfish 250K SNP array for genome-wide association studies[J]. BMC Research Notes, 2014, 7:135.
    [92] Xu J, Zhao Z X, Zhang X F, et al. Development and evaluation of the first high-throughput SNP array for common carp(Cyprinus carpio)[J]. BMC Genomics,2014, 15:307.
    [93] Dupont C,Armant D R,Brenner C A. Epigenetics:definition, mechanisms and clinical perspective[J].Seminars in Reproductive Medicine, 2009, 27(5):351-357.
    [94] Jabbari K, Caccio S, Pais de Barros J P, et al.Evolutionary changes in CpG and methylation levels in the genome of vertebrates[J]. Gene, 1997, 205(1-2):109-118,
    [95] Shao C W, Li Q Y, Chen S L, et al.Epigenetic modification and inheritance in sexual reversal offish[J]. Genome Research,2014, 24(4):604-615.
    [96] Niederhuth C E, Bewick A J, Ji L X, et al. Widespread natural variation of DNA methylation within angiosperms[J]. Genome Biology,2016, 17:194.
    [97]丁勇,许超,吴季辉,等.表观遗传学研究进展[J].中国科学:生命科学,2017,47(1):3-15.Ding Y, Xu C, Wu J H, et al. Recent progress in epigenetics[J]. Scientia Sinica Vitae,2017, 47(1):3-15(in Chinese).
    [98]杨震飞,刘波,戈贤平,等.水产养殖环境胁迫对鱼类表观遗传的影响研究进展[J].大连海洋大学学报,2018, 33(2):270-282.Yang Z F, Liu B, Ge X P, et al. Research progress of aquaculture environmental stress on epigenetic regulation in fish:a review[J]. Journal of Dalian Ocean University,2018, 33(2):270-282(in Chinese).
    [99] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNASeq[J]. Nature Methods, 2008, 5(7):621-628.
    [100] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics,2009, 10(1):57-63.
    [101] Robledo D, Gutierrez A P, Barria A, et al. Gene expression response to sea lice in Atlantic salmon skin:RNA sequencing comparison between resistant and susceptible animals[J]. Frontiers in Genetics, 2018, 9:287.
    [102] Xu J, Li Q, Xu L M, et al. Gene expression changes leading extreme alkaline tolerance in Amur ide(Leuciscus waleckii)inhabiting soda lake[J]. BMC Genomics,2013, 14:682.
    [103] Meyer K D, Saletore Y, Zumbo P, et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons[J]. Cell,2012, 149(7):1635-1646.
    [104] Han Y X, Gao S G, Muegge K, et al. Advanced applications of RNA sequencing and challenges[J].Bioinformatics and Biology Insights, 2015, 9(S1):29-46.
    [105] Suravajhala P, Kogelman L J A, Kadarmideen H N.Multi-omic data integration and analysis using systems genomics approaches:methods and applications in animal production, health and welfare[J]. Genetics Selection Evolution,2016, 48(1):38.
    [106] Tsai H Y, Robledo D, Lowe N R, et al. Construction and annotation of a high density SNP linkage map of the Atlantic salmon(Salmo salar)genome[J]. G3:Genes, Genomes, Genetics, 2016, 6(7):2173-2179.
    [107] Peng W Z, Xu J, Zhang Y, et al. An ultra-high density linkage map and QTL mapping for sex and growthrelated traits of common carp(Cyprinus carpio)[J].Scientific Reports,2016, 6:26693.
    [108] Liu H Y, Fu B D, Pang M X, et al. A high-density genetic linkage map and QTL fine mapping for body weight in crucian carp(Carassius auratus)using 2bRAD sequencing[J]. G3:Genes,Genomes,Genetics,2017, 7(8):2473-2487.
    [109] Liu P, Wang L, Wong S M,et al. Fine mapping QTL for resistance to VNN disease using a high-density linkage map in Asian seabass[J]. Scientific Reports,2016, 6:32122.
    [110] Shao C W, Niu Y C, Rastas P, et al. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder(Paralichthys olivaceus):applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis[J]. DNA Research, 2015, 22(2):161-170.
    [111] Yu Y, Zhang X J, Yuan J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei[J]. Scientific Reports, 2015, 5:15612.
    [112] Jiao W Q, Fu X T, Dou J Z, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing:building up an integrative genomic framework for a bivalve mollusc[J]. DNA Research,2014, 21(1):85-101.
    [113] Yue G H, Wang L. Current status of genome sequencing and its applications in aquaculture[J].Aquaculture, 2017, 468:337-347.
    [114]张晓峰,耿波.重要养殖鱼类经济性状QTL定位研究进展[J].水产学杂志,2018, 31(1):52-66.Zhang X F, Geng B. Advances in QTL mapping of important economic traits in principal cultured fishes[J]. Chinese Journal of Fisheries, 2018, 31(1):52-66(in Chinese).
    [115] Gonen S, Lowe N R, Cezard T, et al. Linkage maps ofthe Atlantic salmon(Salmo salar)genome derived from RAD sequencing[J]. BMC Genomics, 2014, 15:166.
    [116] Feng X, Yu X M, Fu B D, et al. A high-resolution genetic linkage map and QTL fine mapping for growthrelated traits and sex in the Yangtze River common carp(Cyprinus carpio haematopterus)[J]. BMC Genomics,2018, 19(1):230.
    [117] Kuang Y Y, Zheng X H, Li C Y, et al. The genetic map of goldfish(Carassius auratus)provided insights to the divergent genome evolutions in the Cyprinidae family[J]. Scientific Reports, 2016, 6:34849.
    [118] Fu B D, Liu H Y, Yu X M, et al. A high-density genetic map and growth related QTL mapping in bighead carp(Hypophthalmichthys nobilis)[J]. Scientific Reports,2016, 6:28679.
    [119] Sun C F,Niu Y C,Ye X,et al. Construction of a highdensity linkage map and mapping of sex determination and growth-related loci in the mandarin fish(Siniperca chuatsi)[J]. BMC Genomics, 2017, 18:446.
    [120] Wan S M, Liu H, Zhao B W, et al. Construction of a high-density linkage map and fine mapping of QTLs for growth and gonad related traits in blunt snout bream[J].Scientific Reports, 2017, 7:46509.
    [121] Liu S, Li Y, Qin Z, et al. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish[J]. Animal Genetics,2016,47(1):81-90.
    [122] Ao J Q, Li J, You X X, et al. Construction of the highdensity genetic linkage map and chromosome map of large yellow croaker(Larimichthys crocea)[J].International Journal of Molecular Sciences, 2015,16(11):26237-26248.
    [123] Wang L, Wan Z Y, Bai B, et al. Construction of a highdensity linkage map and fine mapping of QTL for growth in Asian seabass[J]. Scientific Reports, 2015, 5:16358.
    [124] Wang W J, Hu Y L, Ma Y, et al. High-density genetic linkage mapping in turbot(Scophthalmus maximus L.)based on SNP markers and major sex-and growthrelated regions detection[J]. PLoS ONE, 2015, 10(3):e0120410.
    [125] Palaiokostas C, Bekaert M, Taggart J B, et al. A new SNP-based vision of the genetics of sex determination in European sea bass(Dicentrarchus labrax)[J].Genetics Selection Evolution,2015, 47(1):68.
    [126] Qiu G F, Xiong L W, Han Z K, et al. A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis[J]. Scientific Reports, 2017, 7:39826.
    [127] Wang J P, Li L, Zhang G F. A high-density SNP genetic linkage map and QTL analysis of growthrelated traits in a hybrid family of oysters(Crassostrea gigas×Crassostrea angulata)using genotyping-bysequencing[J]. G3:Genes,Genomes,Genetics,2016,6(5):1417-1426.
    [128] Niu D H, Du Y C, Wang Z, et al. Construction of the first high-density genetic linkage map and analysis of quantitative trait loci for growth-related traits in Sinonovacula constricta[J]. Marine Biotechnology,2017, 19(5):488-496.
    [129] Wang X L, Chen Z H, Li Q Y, et al. High-density SNPbased QTL mapping and candidate gene screening for yield-related blade length and width in Saccharina japonica(Laminariales, Phaeophyta)[J]. Scientific Reports,2018, 8:13591.
    [130] Chang Y Q, Ding J, Xu Y H, et al. SLAF-based highdensity genetic map construction and QTL mapping for major economic traits in sea urchin Strongylocentrotus intermedius[J]. Scientific Reports, 2018, 8(1):820.
    [131] Yanez J M, Naswa S, Lopez M E, et al. Genomewide single nucleotide polymorphism discovery in Atlantic salmon(Salmo salar):validation in wild and farmed American and European populations[J]. Molecular Ecology Resources,2016, 16(4):1002-1011.
    [132] Palti Y, Gao G, Liu S, et al. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout[J]. Molecular Ecology Resources, 2015, 15(3):662-672.
    [133] Qi H G, Song K, Li C Y, et al. Construction and evaluation of a high-density SNP array for the Pacific oyster(Crassostrea gigas)[J]. PLoS One, 2017, 12(3):e0174007.
    [134] Gutierrez A P, Turner F, Gharbi K, et al. Development of a medium density combined-species SNP array for Pacific and European oysters(Crassostrea gigas and Ostrea edulis)[J]. G3:Genes, Genomes, Genetics,2017, 7(7):2209-2218.
    [135] Sodeland M, Gaarder M, Moen T, et al. Genome-wideassociation testing reveals quantitative trait loci for fillet texture and fat content in Atlantic salmon[J].Aquaculture, 2013, 408-409:169-174.
    [136] Tsai H Y, Hamilton A, Tinch A E, et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array[J]. BMC Genomics,2015, 16:969.
    [137] Gonen S, Baranski M, Thorland I, et al. Mapping and validation of a major QTL affecting resistance to pancreas disease(Salmonid Alphavirus)in Atlantic salmon(Salmo salar)[J]. Heredity, 2015, 115(5):405-414.
    [138] Correa K, Lhorente J P, Bassini L, et al. Genome wide association study for resistance to Caligus rogercresseyi in Atlantic salmon(Salmo salar L.)using a 50K SNP genotyping array[J]. Aquaculture, 2017,472(S1):61-65.
    [139] Campbell N R, LaPatra S E, Overturf K, et al.Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing[J]. G3:Genes,Genomes,Genetics,2014,4(12):2473-248.
    [140] Palti Y, Vallejo R L, Gao G T, et al. Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing[J]. PLoS One, 2015, 10(9):e0138435.
    [141] Gonzalez-Pena D, Gao G T, Baranski M, et al.Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout(Oncorhynchus mykiss)[J]. Frontiers in Genetics, 2016, 7:203.
    [142] Geng X, Sha J, Liu S K, et al. A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance[J]. BMC Genomics,2015,16(1):196.
    [143] Jin Y, Zhou X, Geng X, et al. A Genome-wide association study of heat stress-associated SNPs in catfish[J]. Animal Genetics, 2017,48(2):233-236.
    [144] Zhong X X, Wang X Z, Zhou T, et al. Genome-wide association study reveals multiple novel QTL associated with low oxygen tolerance in hybrid catfishr[J]. Marine Biotechnology, 2017, 19(41):379-390.
    [145] Geng X, Liu S K, Yuan Z H, et al. A Genome-wide association study reveals that genes with functions for bone development are associated with body conformation in catfish[J]. Marine Biotechnology,2017, 19(6):570-578.
    [146] Li N, Zhou T, Geng X, et al. Identification of novel genes significantly affecting growth in catfish through GW AS analysis[J]. Molecular Genetics and Genomics,2018, 293(3):587-599.
    [147] Zheng X H, Kuang Y Y, Lv W H, et al. Genome-wide association study for muscle fat content and abdominal fat traits in common carp(Cyprinus carpio)[J]. PLoS One, 2016, 11(12):e0169127.
    [148] Chen L, Peng W Z, Kong S N, et al. Genetic mapping of head size related traits in common carp(Cyprinus carpio)[J]. Frontiers in Genetics, 2018, 9:448.
    [149] Pearson T A, Manolio T A. How to interpret a genomewide association study[J]. JAMA, 2008, 299(11):1335-1344.
    [150] Gutierrez A P, Yanez J M, Fukui S, et al. Genome-wide association study(GWAS)for growth rate and age at sexual maturation in Atlantic salmon(Salmo salar)[J].PLoS One,2015, 10(3):e0119730.
    [151] Zhou T, Liu S K, Geng X, et al. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance[J]. Molecular Genetics and Genomics, 2017, 292(1):231-242.
    [152] Barria A, Christensen K A, Yoshida G M, et al.Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon(Oncorhynchus kisutch)using ddRAD sequencing[J]. G3:Genes,Genomes, Genetics, 2018,8(4):1183-1194.
    [153] Palaiokostas C, Bekaert M, Taggart J B, et al. A new SNP-based vision of the genetics of sex determination in European sea bass(Dicentrarchus labrax)[J].Genetics Selection Evolution,2015, 47(1):68.
    [154] Wang L, Liu P, Huang S Q, et al. Genome-wide association study identifies loci associated with resistance to viral nervous necrosis disease in Asian seabass[J]. Marine Biotechnology, 2017, 19(3):255-265.
    [155] Salzberg S L. Open questions:how many genes do we have?[J]. BMC Biology, 2018, 16(1):94.
    [156] Wu C,Pan W. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia[J]. Genetic Epidemiology,2018, 42(3):303-316.
    [157] Suravajhala P,Kogelman L J A,Kadarmideen H N.Multi-omic data integration and analysis using systems genomics approaches:methods and applications in animal production, health and welfare[J]. Genetics Selection Evolution, 2016,48(1):38.
    [158] Bardozzo F,Lio P,Roberto T. A study on multi-omic oscillations in Escherichia coli metabolic networks[J].BMC Bioinformatics,2018, 19(S7):194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700