非传统溶液外延法在金属硫化物纳米片表面生长有机无机杂化钙钛矿纳米晶(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets
  • 作者:张志鹏 ; 孙方方 ; 朱兆华 ; 戴杰 ; 高锴 ; 魏琪 ; 石晓桐 ; 孙倩 ; 闫岩 ; 李海 ; 于海东 ; 邢贵川 ; 黄晓 ; 黄维
  • 英文作者:Zhipeng Zhang;Fangfang Sun;Zhaohua Zhu;Jie Dai;Kai Gao;Qi Wei;Xiaotong Shi;Qian Sun;Yan Yan;Hai Li;Haidong Yu;Guichuan Xing;Xiao Huang;Wei Huang;Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech);Institute of Applied Physics and Materials Engineering, University of Macau;Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU);
  • 英文关键词:organic-inorganic hybrid perovskite;;transition metal chalcogenide;;epitaxial growth;;paper-based photodetector
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech);Institute of Applied Physics and Materials Engineering, University of Macau;Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU);
  • 出版日期:2019-01-01
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (51322202);; the Young 1000 Talents Global Recruitment Program of China;; the financial support from Macau Science and Technology Development Fund (FDCT-116/2016/A3 and FDCT-091/2017/A2);; Research Grant (SRG2016-00087-FST) from the University of Macau, the Natural Science Foundation of China (91733302, 61605073 and 2015CB932200);; the Young 1000 Talents Global Recruitment Program of China
  • 语种:英文;
  • 页:SCMA201901004
  • 页数:11
  • CN:01
  • ISSN:10-1236/TB
  • 分类号:49-59
摘要
基于外延异质结构的有机-无机杂化钙钛矿/二维纳米片复合材料在光电领域具有很好的应用前景,但目前使用的固相制备方法大大限制了这一目标的实现.我们通过精细调节溶剂环境,成功利用外延沉积的方式实现了在三角/六方相MoS_2纳米片表面生长立方相MAPbBr_3(MA=CH_3NH~+_3)钙钛矿纳米晶.虽然MAPbBr_3与MoS_2存在较大的晶格不匹配度,但是由于MoS_2纳米片性质柔软且表面缺失悬挂键,可以在两条不同方向上观察到较高容忍度(~1%错位)的外延生长关系.这种外延界面的形成有利于MAPbBr_3与MoS_2之间有效的能量转移,因此基于MAPbBr_3/MoS_2异质结的纸质器件与MAPbBr_3或MoS_2器件相比具有更优异的光电性能.此外,除了提高光吸收能力和能量传递, MoS_2纳米片的存在还为离散的MAPbBr_3纳米晶提供柔性和连续的基底,从而改善了MAPbBr_3纳米晶粒的成膜能力.这种液相外延法可用于高性能的有机无机杂化钙钛矿与二维材料的异质结构材料的大规模制备,将推动异质结构材料在光电领域的广泛使用.
        Epitaxial heterostructures based on organicinorganic hybrid perovskites and two-dimensional materials hold great promises in optoelectronics, but they have been prepared only via solid-state methods that restricted their practical applications. Herein, we report cubic-phased MAPbBr_3(MA=CH_3NH_3~+) nanocrystals were epitaxially deposited on trigonal/hexagonal-phased MoS_2 nanosheets in solution by facilely tuning the solvation conditions. In spite of the mismatched lattice symmetry between the square MAPbBr_3(001) overlayer and the hexagonal MoS2(001) substrate, two different aligning directions with lattice mismatch of as small as 1% were observed based on the domainmatching epitaxy. This was realized most likely due to the flexible nature and absence of surface dangling bonds of MoS_2 nanosheets. The formation of the epitaxial interface affords an effective energy transfer from MAPbBr_3 to MoS_2, and as a result, paper-based photodetectors facilely fabricated from these solution-dispersible heterostructures showed better performance compared to those based on MoS_2 or MAPbBr_3 alone. In addition to the improved energy transfer and light adsorption, the use of MoS_2 nanosheets provided flexible and continuous substrates to connect the otherwise discrete MAPbBr_3 nanocrystals and achieved the better film forming ability. Our work suggests that the scalable preparation of heterostructures based on organic-inorganic hybrid perovskites and 2D materials via solution-phase epitaxy may bring about more opportunities for expanding their optoelectronic applications.
引文
1 Chhowalla M,Shin HS,Eda G,et al.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.Nat Chem,2013,5:263-275
    2 Huang X,Zeng Z,Zhang H.Metal dichalcogenide nanosheets:preparation,properties and applications.Chem Soc Rev,2013,42:1934-1946
    3 Geim AK,Novoselov KS.The rise of graphene.Nat Mater,2007,6:183-191
    4 Karunadasa HI,Montalvo E,Sun Y,et al.A molecular MoS2edge site mimic for catalytic hydrogen generation.Science,2012,335:698-702
    5 Yu WJ,Li Z,Zhou H,et al.Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters.Nat Mater,2013,12:246-252
    6 Yu WJ,Liu Y,Zhou H,et al.Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials.Nat Nanotechnol,2013,8:952-958
    7 Amani M,Lien DH,Kiriya D,et al.Near-unity photoluminescence quantum yield in MoS2.Science,2015,350:1065-1068
    8 Eda G,Maier SA.Two-dimensional crystals:managing light for optoelectronics.ACS Nano,2013,7:5660-5665
    9 Zhang W,Chuu CP,Huang JK,et al.Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2heterostructures.Sci Rep,2014,4:3826
    10 Tan H,Xu W,Sheng Y,et al.Lateral graphene-contacted vertically stacked WS2/MoS2hybrid photodetectors with large gain.Adv Mater,2017,29:1702917
    11 Lin J,Li H,Zhang H,et al.Plasmonic enhancement of photocurrent in MoS2field-effect-transistor.Appl Phys Lett,2013,102:203109
    12 Yu SH,Lee Y,Jang SK,et al.Dye-sensitized MoS2photodetector with enhanced spectral photoresponse.ACS Nano,2014,8:8285-8291
    13 Esmaeili-Rad MR,Salahuddin S.High performance molybdenum disulfide amorphous silicon heterojunction photodetector.Sci Rep,2013,3:2345
    14 Jariwala D,Sangwan VK,Wu CC,et al.Gate-tunable carbon nanotube-MoS2heterojunction p-n diode.Proc Natl Acad Sci USA,2013,110:18076-18080
    15 Noel NK,Stranks SD,Abate A,et al.Lead-free organic-inorganic tin halide perovskites for photovoltaic applications.Energy Environ Sci,2014,7:3061-3068
    16 Jeon T,Kim SJ,Yoon J,et al.Hybrid perovskites:effective crystal growth for optoelectronic applications.Adv Energy Mater,2017,7:1602596
    17 Sum TC,Mathews N.Advancements in perovskite solar cells:photophysics behind the photovoltaics.Energy Environ Sci,2014,7:2518-2534
    18 Yang WS,Noh JH,Jeon NJ,et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science,2015,348:1234-1237
    19 Chiang CH,Nazeeruddin MK,Gr?tzel M,et al.The synergistic effect of H2O and DMF towards stable and 20%efficiency inverted perovskite solar cells.Energy Environ Sci,2017,10:808-817
    20 Saliba M,Matsui T,Domanski K,et al.Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.Science,2016,354:206-209
    21 Xing G,Mathews N,Sun S,et al.Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3.Science,2013,342:344-347
    22 Stranks SD,Eperon GE,Grancini G,et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science,2013,342:341-344
    23 Green MA,Ho-Baillie A,Snaith HJ.The emergence of perovskite solar cells.Nat Photonics,2014,8:506-514
    24 Schmidt LC,Pertegás A,González-Carrero S,et al.Nontemplate synthesis of CH3NH3PbBr3perovskite nanoparticles.J Am Chem Soc,2014,136:850-853
    25 Pathak S,Sakai N,Wisnivesky Rocca Rivarola F,et al.Perovskite crystals for tunable white light emission.Chem Mater,2015,27:8066-8075
    26 Gonzalez-Carrero S,Galian RE,Pérez-Prieto J.Maximizing the emissive properties of CH3NH3PbBr3perovskite nanoparticles.JMater Chem A,2015,3:9187-9193
    27 Huang H,Zhao F,Liu L,et al.Emulsion synthesis of size-tunable CH3NH3PbBr3quantum dots:an alternative route toward efficient light-emitting diodes.ACS Appl Mater Interfaces,2015,7:28128-28133
    28 Zhu F,Men L,Guo Y,et al.Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.ACSNano,2015,9:2948-2959
    29 Jang DM,Kim DH,Park K,et al.Ultrasound synthesis of lead halide perovskite nanocrystals.J Mater Chem C,2016,4:10625-10629
    30 Xing J,Yan F,Zhao Y,et al.High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles.ACSNano,2016,10:6623-6630
    31 Im JH,Lee CR,Lee JW,et al.6.5%Efficient perovskite quantumdot-sensitized solar cell.Nanoscale,2011,3:4088-4093
    32 Niu L,Liu X,Cong C,et al.Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions.Adv Mater,2015,27:7800-7808
    33 Cheng HC,Wang G,Li D,et al.van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials.Nano Lett,2015,16:367-373
    34 Lu J,Carvalho A,Liu H,et al.Hybrid bilayer WSe2-CH3NH3PbI3organolead halide perovskite as a high-performance photodetector.Angew Chem Int Ed,2016,55:11945-11949
    35 Ma C,Shi Y,Hu W,et al.Heterostructured WS2/CH3NH3PbI3photoconductors with suppressed dark current and enhanced photodetectivity.Adv Mater,2016,28:3683-3689
    36 Kang DH,Pae SR,Shim J,et al.An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure.Adv Mater,2016,28:7799-7806
    37 Wang Y,Fullon R,Acerce M,et al.Solution-processed MoS2/organolead trihalide perovskite photodetectors.Adv Mater,2017,29:1603995
    38 Zhang F,Zhong H,Chen C,et al.Brightly luminescent and colortunable colloidal CH3NH3PbX3(X=Br,I,Cl)quantum dots:potential alternatives for display technology.ACS Nano,2015,9:4533-4542
    39 Zhang F,Huang S,Wang P,et al.Colloidal synthesis of air-stable CH3NH3PbI3quantum dots by gaining chemical insight into the solvent effects.Chem Mater,2017,29:3793-3799
    40 Zeng Z,Yin Z,Huang X,et al.Single-layer semiconducting nanosheets:high-yield preparation and device fabrication.Angew Chem Int Ed,2011,50:11093-11097
    41 Li H,Wu J,Yin Z,et al.Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2and WSe2nanosheets.Acc Chem Res,2014,47:1067-1075
    42 Heising J,Kanatzidis MG.Exfoliated and restacked MoS2and WS2:ionic or neutral species?Encapsulation and ordering of hard Electropositive cations.J Am Chem Soc,1999,121:11720-11732
    43 Peng W,Wang L,Murali B,et al.Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells.Adv Mater,2016,28:3383-3390
    44 Brunetti B,Cavallo C,Ciccioli A,et al.On the thermal and thermodynamic(in)stability of methylammonium lead halide perovskites.Sci Rep,2016,6:31896
    45 Kappera R,Voiry D,Yalcin SE,et al.Phase-engineered low-resistance contacts for ultrathin MoS2transistors.Nat Mater,2014,13:1128-1134
    46 Eda G,Yamaguchi H,Voiry D,et al.Photoluminescence from chemically exfoliated MoS2.Nano Lett,2011,11:5111-5116
    47 Voiry D,Salehi M,Silva R,et al.Conducting MoS2nanosheets as catalysts for hydrogen evolution reaction.Nano Lett,2013,13:6222-6227
    48 Narayan J,Larson BC.Domain epitaxy:A unified paradigm for thin film growth.J Appl Phys,2003,93:278-285
    49 Huang X,Zeng Z,Bao S,et al.Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets.Nat Commun,2013,4:1444
    50 Lin Z,Yin A,Mao J,et al.Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.Sci Adv,2016,2:e1600993
    51 Jin M,Zhang H,Wang J,et al.Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch.ACS Nano,2012,6:2566-2573
    52 Fan FR,Liu DY,Wu YF,et al.Epitaxial growth of heterogeneous metal nanocrystals:from gold nano-octahedra to palladium and silver nanocubes.J Am Chem Soc,2008,130:6949-6951
    53 Geim AK,Grigorieva IV.van der Waals heterostructures.Nature,2013,499:419-425
    54 Schulz P,Edri E,Kirmayer S,et al.Interface energetics in organometal halide perovskite-based photovoltaic cells.Energy Environ Sci,2014,7:1377-1381
    55 Yang D,Yang R,Zhang J,et al.High efficiency flexible perovskite solar cells using superior low temperature TiO2.Energy Environ Sci,2015,8:3208-3214
    56 Fang H,Li J,Ding J,et al.An origami perovskite photodetector with spatial recognition ability.ACS Appl Mater Interfaces,2017,9:10921-10928
    57 Lin CH,Tsai DS,Wei TC,et al.Highly deformable origami paper photodetector arrays.ACS Nano,2017,11:10230-10235
    58 Cai C,Ma Y,Jeon J,et al.Epitaxial growth of large-grain NiSe films by solid-state reaction for high-responsivity photodetector arrays.Adv Mater,2017,29:1606180
    59 Lopez-Sanchez O,Lembke D,Kayci M,et al.Ultrasensitive photodetectors based on monolayer MoS2.Nat Nanotechnol,2013,8:497-501
    60 Stranks SD,Snaith HJ.Metal-halide perovskites for photovoltaic and light-emitting devices.Nat Nanotechnol,2015,10:391-402
    61 Fan X,Xu P,Zhou D,et al.Fast and efficient preparation of exfoliated 2H MoS2nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion.Nano Lett,2015,15:5956-5960

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700