水泥-电力行业的产业共生网络构建及区域案例研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Industrial Symbiosis Network Construction between Cement and Coal-Fired Power Industries and the Case Study
  • 作者:赵步 ; 李杨 ; 孙明星 ; 朱俊明 ; 石磊
  • 英文作者:ZHAO Bu;LI Yang;SUN Mingxing;ZHU Junming;SHI Lei;State Environmental Protection Key Laboratory on Eco-Industry,School of Environment,Tsinghua University;School of Public Policy and Management,Tsinghua University;
  • 关键词:产业共生 ; 生态工业 ; 水泥行业 ; 电力行业 ; CO2减排
  • 英文关键词:industrial symbiosis;;eco-industrial development;;cement industry;;coal-fired power industry;;CO2 emission mitigation
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:清华大学环境学院国家环境保护生态工业重点实验室;清华大学公共管理学院;
  • 出版日期:2018-05-25 15:55
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.253
  • 基金:国家重点研发计划重点专项(No.2016YFF0201601)~~
  • 语种:中文;
  • 页:HJKX201902002
  • 页数:7
  • CN:02
  • ISSN:11-1827/X
  • 分类号:14-20
摘要
水泥工业作为工业生态系统的汇,能够多样化地利用其他行业的副产物,这种典型的产业共生模式可以通过减少资源和能源的消耗带来显著的CO_2减排效果.由于产业共生在水泥行业具有一定的普遍性及巨大的CO_2减排潜力,所以对水泥工业产业共生现状的了解与分析就显得尤为重要;而通过对产业共生现状的全面了解,才能对现有水泥行业产业共生的程度进行分析,并以此为参照,对未来不同政策与情景下的CO_2减排潜力进行量化与评估.为实现对产业共生实际情况的模拟,以水泥-电力行业的产业共生为例,采用最优化的方法,提出了一套基于一般统计数据来模拟产业共生实际情况的系统方法,将技术、经济与政策3类不同的决策变量影响纳入模型,以模拟出最接近真实情景的产业共生情况.为验证模型的有效性,对新乡市水泥-电力行业实际的产业共生情况进行分析.结果表明:新乡市水泥-电力行业间存在普遍的产业共生现象,实地调查中有77.8%(21家)的水泥制造企业利用粉煤灰作为水泥制造的原材料.将一般统计数据与实地调查数据对比发现,一般统计数据能较好地反映企业实际物质投入产出情况;利用一般统计数据,模型对新乡市产业共生网络结构模拟的准确率高达92.6%,显示该模型能较为有效地对产业共生的实际情况进行模拟.
        Cement industry plays the role of hub in the industrial ecosystem,which is capable of diversifying the use of wastes and consuming large amounts of byproducts from various other industries.This typical mode of industrial symbiosis can bring significant CO_2emission mitigation effect through reducing the consumption of resources and energy.Due to the prevalence of industrial symbiosis in cement industry and its huge CO_2emission mitigation potential,it is particularly important to investigate and understand the realistic status of industrial symbiosis in order to analyze the degree of industrial symbiosis and then to use it as a reference to quantify and evaluate the potential of CO_2emission mitigation under different scenarios in the future.In this study,in order to simulate the realistic status of industrial symbiosis,a systematic framework was proposed to simulate the realistic status of industrial symbiosis between cement and coal-fired power industries by using the method of optimization.This method incorporates the influences of three different decision variables of technology,economy and policy into the model to simulate the symbiosis of the industries that were closest to the real situation.The effectiveness of this framework was verified by the case study in Xinxiang City,Henan Province.The results show that 77.8%(21companies)of the cement manufacturing enterprises in the field survey use fly ash as the raw material for cement manufacturing,indicating a general industry symbiosis phenomenon between the cement and coal fired industries in Xinxiang City.The general statistics are compared with the field survey data in order to guarantee that the general statistical data can reflect the actual material input and output of the enterprises.Ultimately,the accuracy of the final model for the simulation of the industrial symbiosis network structure in Xinxiang City is as high as 92.6%inputting the general statistical data,suggesting that this model can effectively simulate the actual situation of industrial symbiosis.
引文
[1] GREGG J S,ANDRES R J,MARLAND G.China:emissions pattern of the world leader in CO2emissions from fossil fuel consumption and cement production[J].Geophysical Research Letters,2008,35(8):135-157.
    [2] BENHELAL E,ZAHEDI G,SHAMSAEI E,et al.Global strategies and potentials to curb CO2emissions in cement industry[J].Journal of Cleaner Production,2013,51(1):142-161.
    [3] SHI Caijun,JIMNEZ A F,PALOMO A.New cements for the 21st century:the pursuit of an alternative to Portland cement[J].Cement&Concrete Research,2011,41(7):750-763.
    [4] GAO Tianming,SHEN Lei,SHEN Ming,et al. Analysis on differences of carbon dioxide emission from cement production and their major determinants[J]. Journal of Cleaner Production,2015,103:160-170.
    [5] KAJASTE R,HURME M. Cement industry greenhouse gas emissions-management options and abatement cost[J]. Journal of Cleaner Production,2016,112:4041-4052.
    [6] DEJA J,ULIASZ-BOCHENCZYK A,MOKRZYCKI E. CO2emissions from Polish cement industry[J]. International Journal of Greenhouse Gas Control,2010,4(4):583-588.
    [7] MADLOOL N,SAIDUR R,HOSSAIN M,et al.A critical review on energy use and savings in the cement industries[J].Renewable and Sustainable Energy Reviews,2011,15(4):2042-2060.
    [8] HUISINGH D,ZHANG Zhihua,MOORE J C,et al.Recent advances in carbon emissions reduction:policies,technologies,monitoring,assessment and modeling[J].Journal of Cleaner Production,2015,103:1-12.
    [9]中华人民共和国国家统计局.中国统计年鉴2016[M].北京:中国统计出版社,2016:321-405.
    [10]魏晋渝.中国水泥年鉴2014[M].北京:中国建材工业出版社,2015:227-323.
    [11] YANG Xi,TENG Fei,WANG Gehua. Quantifying co-benefit potentials in the Chinese cement sector during 12thFive Year Plan:an analysis based on marginal abatement cost with monetized environmental effect[J]. Journal of Cleaner Production,2013,58(6):102-111.
    [12] WEN Zongguo,CHEN Min,MENG Fanxin. Evaluation of energy saving potential in China's cement industry using the Asian-Pacific integrated model and the technology promotion policy analysis[J].Energy Policy,2015,77:227-237.
    [13]赵建安,魏丹青.中国水泥生产碳排放系数测算典型研究[J].资源科学,2013,35(4):800-808.ZHAO Jian'an,WEI Danqing. Carbon emission factors for cement plants in China[J].Resources Science,2013,35(4):800-808.
    [14] CHERTOW M R.Industrial symbiosis:literature and taxonomy[J].Annual Review of Energy&the Environment,2000,25(1):313-337.
    [15] CHERTOW M R.‘Uncovering’industrial symbiosis[J].Journal of Industrial Ecology,2007,11(1):11-30.
    [16] MATTILA T J,PAKARINEN S,SOKKA L. Quantifying the total environmental impacts of an industrial symbiosis:a comparison of process-,hybrid and input-output life cycle assessment[J].Environmental Science&Technology,2010,44(11):4309-4314.
    [17] YU Bing,LI Xiao,SHI Lei,et al. Quantifying CO2emission reduction from industrial symbiosis in integrated steel mills in China[J].Journal of Cleaner Production,2015,103:801-810.
    [18] UCHIKAWA H,HANEHARA S. Recycling of waste as an alternative raw material and fuel in cement manufacturing[C]//CHANDRA S. Waste materials used in concrete manufacturing. 1996:430-553.
    [19] TSILIYANNIS C A.Industrial wastes and by-products as alternative fuels in cement plants:evaluation of an industrial symbiosis option[J]. Journal of Industrial Ecology,2017. doi:org/10. 1111/jiec. 12644.
    [20] OH D Y,NOGUCHI T,KITAGAKI R,et al.CO2emission reduction by reuse of building material waste in the Japanese cement industry[J].Renewable&Sustainable Energy Reviews,2014,38(5):796-810.
    [21] CROSSIN E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute[J]. Journal of Cleaner Production,2015,95:101-108.
    [22]高长明.试论我国水泥工业的利废发展方向[J].新世纪水泥导报,2011,17(3):3-6.GAO Changming.Discussion on the development direction of waste utilization in China's cement industry[J]. Cement Guide for New Epoch,2011,17(3):3-6.
    [23] ACI Committee. Use of fly ash in concrete[S]. Farmington Hills,Mich:American Concrete Institute,2004.
    [24] AHMARUZZAMAN M. A review on the utilization of fly ash[J].Progress in Energy&Combustion Science,2010,36:327-363.
    [25] VARGAS J,HALOG A. Effective carbon emission reductions from using upgraded fly ash in the cement industry[J]. Journal of Cleaner Production,2015,103(1):948-959.
    [26] FEIZ R,AMMENBERG J,BAAS L,et al. Improving the CO2,performance of cement:partⅠ. utilizing life-cycle assessment and key performance indicators to assess development within the cement industry[J].Journal of Cleaner Production,2015,98:272-281.
    [27] FEIZ R,AMMENBERG J,BAAS L,et al. Improving the CO2performance of cement:partⅡ. framework for assessing CO2improvement measures in the cement industry[J]. Journal of Cleaner Production,2015,98:282-291.
    [28] AMMENBERG J,BAAS L,EKLUND M,et al.Improving the CO2,performance of cement,partⅢ. the relevance of industrial symbiosis and how to measure its impact[J]. Journal of Cleaner Production,2014,98:145-155.
    [29] STEFANOVIC G M,VUCKOVIC G D,STOJILJKOVIC M M,et al.CO2reduction options in cement industry:the Novi Popovac case[J].Thermal Science,2010,14(3):671-679.
    [30] BA-SHAMMAKH M,CARUSO H,ELKAMEL A,et al.Analysis and optimization of carbon dioxide emission mitigation options in the cement industry[J]. American Journal of Environmental Sciences,2008,4(5):482-490.
    [31] DAMTOFT J S.Use of fly ash and other waste materials as raw feed and energy source in the Danish cement industry[C]//SOBOLEV K. International symposium on sustainable development of cement and concrete industry. Ottawa,Canada:CANMET/ACI,1998:95-105.
    [32]宋雨萌,石磊.工业共生网络的复杂性度量及案例分析[J].清华大学学报(自然科学版),2008,48(9):1441-1444.SONG Yumeng,SHI Lei. Complexity measurements for Kalundborg and Gongyi industrial symbiosis networks[J]. Journal of Tsinghua University(Science and Technology),2008,48(9):1441-1444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700