羟基磷灰石及其复合材料增材制造研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Additive Manufacture of Hydroxyapatite and Its Composites
  • 作者:马高 ; 朱伟 ; 史云松 ; 闫春泽 ; 史玉升
  • 英文作者:MA Gao;ZHU Wei;SHI Yunsong;YAN Chunze;SHI Yusheng;State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Engineering and Science,Huazhong University of Science and Technology;Guangdong Silver Age Science and Technology Company, Ltd.;
  • 关键词:增材制造技术 ; 羟基磷灰石 ; 生物材料 ; 骨组织工程支架
  • 英文关键词:additive manufacturing;;hydroxyapatite;;biomaterial;;bone tissue engineering scaffold
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室;广东银禧科技股份有限公司;
  • 出版日期:2017-02-20 10:02
  • 出版单位:硅酸盐学报
  • 年:2017
  • 期:v.45;No.336
  • 基金:广东省引进创新创业团队计划(2013C071)
  • 语种:中文;
  • 页:GXYB201703012
  • 页数:9
  • CN:03
  • ISSN:11-2310/TQ
  • 分类号:73-81
摘要
由于羟基磷灰石与天然骨中的无机矿物相类似,具有良好的生物相容性和骨传导性,可和宿主骨形成良好的化学键合,因此成为骨组织工程支架材料中常见的主要成分。骨组织工程支架具有个性化复杂结构,对制造工艺有较高要求,发泡法和冷冻干燥法等传统制造方法难以成形出具有复杂结构的个性化支架。增材制造技术利用计算机辅助设计,采用逐层制造并叠加的原理,理论上可成形出任何形状的三维实体零件。与传统制造工艺相比,该技术在精确制造复杂外部形状、内部微孔结构的骨组织工程支架方面有独特优势。综述了目前利用增材制造技术成形羟基磷灰石及其复合材料的最新研究进展,并展望了该领域的发展趋势。
        Hydroxyapatite(HA), which is similar to inorganic mineral in natural bones, is a main biomaterial for fabricating bone tissue engineering scaffolds due to its superior biocompatibility and bone conductibility. Bone tissue engineering scaffolds show a complex and customised structure, which has a greater requirement for manufacturing processes. However, it is difficult for the conventional manufacturing techniques such as foaming method and injection forming to create an ideal porous scaffold of artificial bones. Additive manufacture(AM) is capable of making any shapes of three-dimensional solid parts layer-by-layer by using computer-aided design models. Compared to the conventional processes, the AM shows some unique advantages in fabricating bone tissue engineering scaffolds with greater manufacturing accuracy, complex external shapes and internal micro-porous structures. This paper reviews the state of the art in the preparation and the AM process of HA and its composite materials, and proposes an outlook in this aspect.
引文
[1]HASSAN M N,MAHMOUD M M,EL-FATTAH A A,et al.Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes[J].Ceram Int,2016,42(3):3725–3744.
    [2]SA Y,YANG F,DE WIJN J R,et al.Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid[J].Mater Sci Eng C,2016,61(4):190–198.
    [3]CAO H,KUBOYAMA N.A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering[J].Bone,2010,46(2):386–395.
    [4]LI M,LIU Q,JIA Z,et al.Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications[J].Carbon,2014,67(2):185–197.
    [5]LIU Y,DANG Z,WANG Y,et al.Hydroxyapatite/grapheme-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications:Inherited nanostructures and enhanced properties[J].Carbon,2014,67(2):250–259.
    [6]YOSHIKAWA H,TAMAI N,MURASE T,et al.Interconnected porous hydroxyapatite ceramics for bone tissue engineering[J].J R Soc Interf,2008,23(12):1–8.
    [7]BOSE S,VAHABZADEH S,BANDYOPADHYAY A.Bone tissue engineering using 3D printing[J].Mater Today,2013,16(12):496–504.
    [8]STOPPATO M,CARLETTI E,SIDAROVICH V,et al.Influence of scaffold pore size on collagen I development:A new in vitro evaluation perspective[J].J Bioact Compat Pol,2013,28(1):16–32.
    [9]赵婧,李金雨,智伟,等.蜡球造孔法制备多孔HA陶瓷支架及其性能优化[J].无机材料学报,2013,28(1):74–78.ZHAO Jing,LI Jinyu,ZHI Wei,et al.J Inorg Mater(in Chinese),2013,28(1):74–78.
    [10]SULTANA N,WANG M.Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds[J].J Mater Sci Mater Med,2008,19(7):2555–2561.
    [11]D'ANTòV,RAUCCI M G,GUARINO V,et al.Behaviour of human mesenchymal stem cells on chemically synthesized HA–PCL scaffolds for hard tissue regeneration[J].J Tissue Eng Regen Med,2016.10(2):147–154.
    [12]WARNKE P H,SEITZ H,WARNKE F,et al.Ceramic scaffolds produced by computer-assisted 3D printing and sintering:Characterization and biocompatibility investigations[J].J Biomed Mater Res B,2010,93(1):212–217.
    [13]LEUKERS B,GüLKAN H,IRSEN S H,et al.Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing[J].J Mater Sci Mater Med,2005,16(12):1121–1124.
    [14]CHEN C H,SHYU V B H,CHEN J P,et al.Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering[J].Biofabrication,2014,6(1):1–11.
    [15]TAN K H,CHUA C K,LEONG K F,et al.Selective laser sintering of biocompatible polymers for applications in tissue engineering[J].Bio-med Mater Eng,2005,15(1):113–124.
    [16]ZHOU W Y,LEE S H,WANG M,et al.Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres[J].J Mater Sci Mater Med,2008,19(7):2535–2540.
    [17]JONES A C,ARNS C H,SHEPPARD A P,et al.Assessment of bone ingrowth into porous biomaterials using MICRO–CT[J].Biomaterials,2007,28(15):2491–2504.
    [18]MüLLER B,DEYHLE H,FIERZ F C,et al.Bio-mimetic hollow scaffolds for long bone replacement[C]//SPIE Nano Science+Engineering.International Society for Optics and Photonics,California,the United States,2009:74010D–74010D–13.
    [19]HABIBOVIC P,GBURECK U,DOILLON C J,et al.Osteoconduction and osteoinduction of low–temperature 3D printed bioceramic implants[J].Biomaterials,2008,29(7):944–953.
    [20]SINGH A K,GAJIWALA A L,RAI R K,et al.Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts[J].Mater Sci Eng,C,2016,62(5):574–584.
    [21]BUTSCHER A,BOHNER M,HOFMANN S,et al.Structural and material approaches to bone tissue engineering in powder-based three–dimensional printing[J].Acta Biomater,2011,7(3):907–920.
    [22]VORNDRAN E,MOSEKE C,GBURECK U.3D printing of ceramic implants[J].MRS Bull,2015,40(2):127–136.
    [23]闫春泽,史玉升,杨劲松,等.高分子材料在选择性激光烧结中的应用–––(Ⅰ)材料研究的进展[J].高分子材料科学与工程,2010(7):170–174.YAN Chunze,SHI Yusheng,YANG Jinsong,et al.Polym Mater Sci Eng(in Chinese),2010(7):170–174.
    [24]HAO L,SAVALANI M M,ZHANG Y,et al.Effects of material morphology and processing conditions on the characteristics of hydroxyapatite and high-density polyethylene biocomposites by selective laser sintering[J].P I Mech Eng L–J Mat,2006,220(3):125–137.
    [25]SHIRAZI S F S,GHAREHKHANI S,MEHRALI M,et al.A review on powder-based additive manufacturing for tissue engineering:selective laser sintering and inkjet 3D printing[J].Sci Technol Adv Mater,2015,16(3):1–20.
    [26]DUAN S,FENG P,GAO C D,et al.Microstructure evolution and mechanical properties improvement in liquid-phase–sintered hydroxyapatite by laser sintering[J].Materials,2015,8(3):1162–1175.
    [27]SHUAI C J,Cao Y Y,Gao C D,et al.Hydroxyapatite whisker reinforced 63s glass scaffolds for bone tissue engineering[J].Bio Med Res Int,2015,2015.
    [28]FENG P,WEI P P,LI P J,et al.Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering[J].Mater Charact,2014,97(11):47–56.
    [29]SHUAI C J,NIE Y,GAO C D,et al.The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering[J].J Exp Nanosci,2013,8(5):762–773.
    [30]SHUAI C J,FENG P,CAO C D,et al.Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering[J].Biotechnol Bioprocess Eng,2013,18(3):520–527.
    [31]SHUAI C J,LI P,LIU J,et al.Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering[J].Mater Charact,2013,77(3):23–31.
    [32]SACHS E M,HAGGERTY J S,CIMA M J,et al.Three-dimensional printing techniques[P].US Patent,5 204 055.1993–4–20.
    [33]ZHOU Z,BUCHANAN F,MITCHELL C,et al.Printability of calcium phosphate:calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique[J].Mater Sci Eng,C,2014,38:1–10.
    [34]WILL J,MELCHER R,TREUL C,et al.Porous ceramic bone scaffolds for vascularized bone tissue regeneration[J].J Mater Sci Mater Med,2008,19(8):2781–2790.
    [35]SUWANPRATEEB J,SANNGAM R,PANYATHANMAPORN T.Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique[J].Mater Sci Eng C,2010,30(4):610–617.
    [36]SEITZ H,DEISINGER U,LEUKERS B,et al.Different calcium phosphate granules for 3D printing of bone tissue engineering scaffolds[J].Adv Eng Mater,2009,11(5):B41–B46.
    [37]INZANA J A,OLVERA D,FULLER S M,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J].Biomaterials,2014,35(13):4026–4034.
    [38]IRSEN S H,LEUKERS B,H?CKLING C,et al.Bioceramic granulates for use in 3D printing:process engineering aspects[J].Materialwiss Werkst,2006,37(6):533–537.
    [39]GIBSON I,ROSEN D W,STUCKER B.Additive manufacturing technologies[M].New York:Springer,2010:61–63.
    [40]LEE J W,AHN G S,KIM D S,et al.Development of nano-and microscale composite 3D scaffolds using PPF/DEF–HA and micro–stereolithography[J].Microelectronic Eng,2009,86(4):1465–1467.
    [41]RONCA A,AMBROSIO L,GRIJPMA D W.Preparation of designed poly(d,l–lactide)/nanosized hydroxyapatite composite structures by stereolithography[J].Acta Biomater,2013,9(4):5989–5996.
    [42]CESARANO III J,CALVERT P D.Free forming objects with low-binder slurry[P].US Patent,6,027,326.2000–2–22.
    [43]LEWIS J A,SMAY J E,STUECKER J,et al.Direct ink writing of three-dimensional ceramic structures[J].J Am Ceram Soc,2006,89(12):3599–3609.
    [44]王小锋,孙月花,彭超群,等.直写成型用悬浮液的设计[J].无机材料学报,2015,30(11):1139–1147.WANG Xiaofeng,SUN Yuehua,PENG Chaoqun,et al.J Inorg Mater(in Chinese),2015,30(11):1139–1147.
    [45]RUSSIAS J,SAIZ E,DEVILLE S,et al.Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting[J].J Biomed Mater Res A,2007,83(2):434–445.
    [46]STUDART A R.Additive manufacturing of biologically-inspired materials[J].Chem Soc Rev,2016,45(2):359–376.
    [47]ECKEL Z C,ZHOU C,MARTIN J H,et al.Additive manufacturing of polymer-derived ceramics[J].Science,2016,351(6268):58–62.
    [48]FENG P,NIU M,GAO C,et al.A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering[J].Sci Rep,2014,5599(4):1–10.
    [49]SIMPSON R L,WIRIA F E,AMIS A A,et al.Development of a 95/5poly(L-lactide-co-glycolide)/hydroxylapatite andβ-tricalcium phosphate scaffold as bone replacement material via selective laser sintering[J].J Biomed Mater Res B,2008,84(1):17–25.
    [50]QIAN C,ZHANG F,SUN J.Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing[J].Bio–Med Mater Eng,2015,25(2):127–136.
    [51]CASTILHO M,MOSEKE C,EWALD A,et al.Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects[J].Biofabrication,2014,6(1):1–12.
    [52]CHIA H N,WU B M.Recent advances in 3D printing of biomaterials[J].J Biol Eng,2015,9(1):1–14.
    [53]FIERZ F C,BECKMANN F,HUSER M,et al.The morphology of anisotropic 3D-printed hydroxyapatite scaffolds[J].Biomaterials,2008,29(28):3799–3806.
    [54]COX S C,THORNBY J A,GIBBONS G J,et al.3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications[J].Mater Sci Eng,C,2015,47(2):237–247.
    [55]HUTMACHER D W,SCHANTZ J T,LAM C X F,et al.State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective[J].J Tissue Eng Regen Med,2007,1(4):245–260.
    [56]SHIRAZI F,MEHRALI M,OSHKOUR A A,et al.Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications[J].J Mech Behav Biomed Mater,2014,30(2):168–175.
    [57]SONG X H,LI W,SONG P H,et al.Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications[J].Int J Adv Manuf Tech,2015,81(1–4):15–25.
    [58]ESHRAGHI S,DAS S.Micromechanical finite–element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering[J].Acta Biomater,2012,8(8):3138–3143.
    [59]GBURECK U,H?LZEL T,BIERMANN I,et al.Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping[J].J Mater Sci Mater Med,2008,19(4):1559–1563.
    [60]RAMESH S,NATASHA A N,TAN C Y,et al.Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method[J].Ceram Int,2016,42(6):7824–7829.
    [61]GALLARDO–LóPEZ A,DOMíNGUEZ–RODRíGUEZ A,ESTOUMèS C,et al.Plastic deformation of dense nanocrystalline yttrium oxide at elevated temperatures[J].J Eur Ceram Soc,2012,32(12):3115–3121.
    [62]SUWANPRATEEB J,SANNGAM R,SUVANNAPRUK W,et al.Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by3D-printing[J].J Mater Sci Mater Med,2009,20(6):1281–1289.
    [63]SUWANPRATEEB J,SANNGAM R,SUVANNAPRUK W.Fabrication of bioactive hydroxyapatite/bis–GMA based composite via three dimensional printing[J].J Mater Sci Mater Med,2008,19(7):2637–2645.
    [64]SHISHKOVSKII I V,YADROITSEV I A,SMUROV I Y.Selective laser sintering/melting of nitinol-hydroxyapatite composite for medical applications[J].Powder Metall Met C+,2011,50(5–6):275–283.
    [65]KHALAJABADI S Z,KADIR M R A,IZMAN S,et al.The effect of Mg O on the biodegradation,physical properties and biocompatibility of a Mg/HA/Mg O nanocomposite manufactured by powder metallurgy method[J].J Alloy Compd,2016,655(1):266–280
    [66]SAIJO H,IGAWA K,KANNO Y,et al.Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology[J].J Artif Organs,2009,12(3):200–205.
    [67]HUTMACHER D W.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529–2543.
    [68]吴贵.复合胶原/rh BMP–2壳聚糖微球的3D打印多孔羟基磷灰架的制备及其异位成骨研究[D].北京:北京协和医学院,2015.WU Gui Preparation of 3D printed porous hydroxyapatite scaffold coated with collagen/r HBMP–2 chitosan microspheres and ectopic bone formation investigation in vivo(in Chinese,dissertation).Bei Jing:Peking Union Medical College,2015
    [69]GBURECK U,VORNDRAN E,MüLLER F A,et al.Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices[J].J Control Release,2007,122(2):173–180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700