Recent advances in solid-state LED phosphors with thermally stable luminescence
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances in solid-state LED phosphors with thermally stable luminescence
  • 作者:Jianwei ; Qiao ; Jing ; Zhao ; Quanlin ; Liu ; Zhiguo ; Xia
  • 英文作者:Jianwei Qiao;Jing Zhao;Quanlin Liu;Zhiguo Xia;School of Materials Science and Engineering,University of Science and Technology Beijing;State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials,South China University of Technology;
  • 英文关键词:White LEDs;;Phosphor;;Thermal quenching;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:School of Materials Science and Engineering,University of Science and Technology Beijing;State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials,South China University of Technology;
  • 出版日期:2019-05-20
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 基金:Project supported by the National Natural Science Foundation of China(51722202,91622125,51572023);; Natural Science Foundation of Beijing,China(2172036)
  • 语种:英文;
  • 页:YXTB201906002
  • 页数:8
  • CN:06
  • ISSN:11-2788/TF
  • 分类号:9-16
摘要
Phosphor-converted white light-emitting diode(LED) lighting has gained tremendous achievements since the invention of the InGaN blue LED by Nakamura et al., who won the Nobel Physics Prize in 2014.By far, a significant challenge comes from the thermal quenching(TQ) behavior of the present LED phosphors during the high-power LED operation or the updated laser lighting. But systematic research or review on the luminescence quenching character and/or how to realize thermally stable luminescence are lacking. Since TQ is an inherent property of phosphors, it can be diminished by different approaches.This review proceeds from the mechanism of TQ, summarizes previous researches on improving the thermal stability of LED phosphors and also discusses future research opportunities in this field. The developments of the phosphors with properties of high luminance and thermal stability, as well as the improved strategies involved,will benefit the basic researches and applications in high power lighting or high-luminance laser lighting.
        Phosphor-converted white light-emitting diode(LED) lighting has gained tremendous achievements since the invention of the InGaN blue LED by Nakamura et al., who won the Nobel Physics Prize in 2014.By far, a significant challenge comes from the thermal quenching(TQ) behavior of the present LED phosphors during the high-power LED operation or the updated laser lighting. But systematic research or review on the luminescence quenching character and/or how to realize thermally stable luminescence are lacking. Since TQ is an inherent property of phosphors, it can be diminished by different approaches.This review proceeds from the mechanism of TQ, summarizes previous researches on improving the thermal stability of LED phosphors and also discusses future research opportunities in this field. The developments of the phosphors with properties of high luminance and thermal stability, as well as the improved strategies involved,will benefit the basic researches and applications in high power lighting or high-luminance laser lighting.
引文
1. Pust P, Schmidt PJ, Schnick W. A revolution in lighting. Nat Mater. 2015; 14(5):454.
    2. Pust P, Weiler V, Hecht C, Tucks A, Wochnik AS, Henss AK, et al. Narrow-band red-emitting Sr[LiAl_3N_4]:Eu~(2+)as a next-generation LED-phosphor material. Nat Mater. 2014;13(9):891.
    3. Reineke S. Complementary LED technologies. Nat Mater. 2015;14(5):459.
    4. Xia ZG, Liu QL Progress in discovery and structural design of color conversion phosphors for LEDs. Prog Mater Sci. 2016;84:59.
    5. Qin X, Liu XW, Huang W, Bettinelli M, Liu XG. Lanthanide-activated phosphors based on 4f-5d optical transitions:theoretical and experimental aspects. Chem Rev. 2017;117(5):4488.
    6. Xia ZG, Meijerink A. Ce~(3+)-Doped garnet phosphors:composition modification,luminescence properties and applications. Chem Soc Rev. 2017;46(1):275.
    7. Terraschke H, Wickleder C. UV, blue, green, yellow, red, and small:newest developments on Eu~(2+)-doped nanophosphors. Chem Rev. 2015;115(20):11352.
    8. Dingel BB, Tsukamoto K, Tsonev D, Videv S, Haas H. Light fidelity(Li-Fi):towards all-optical networking. 2013, 9007:900702.
    9. Wang XJ, Takeda T, Hirosaki N, Funahashi S, Xie RJ. Single-particle-diagnosis approach:an efficient strategy for discovering new nitride phosphors. J Rare Earths. 2018;36(1):42.
    10. Smet PF, Joos JJ. White light-emitting diodes:stabilizing colour and intensity.Nat Mater. 2017;16(5):500.
    11. Li GG, Tian Y, Zhao Y, Lin J. Recent progress in luminescence tuning of Ce~(3+)and Eu~(2+)-activated phosphors for pc-WLEDs. Chem Soc Rev. 2015;44(23):8688.
    12. Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T. White light emitting diodes with super-high luminous efficacy. J Phys D Appl Phys. 2010;43(35):354002.
    13. Chen L, Lin CC, Yeh CW, Liu RS. Light converting inorganic phosphors for white light-emitting diodes. Materials. 2010;3(3):2172.
    14. Volker B, Ronda C, Oeckler O, Meijerink A, Schnick W, Meijerink A. Color point tuning for(Sr,Ca,Ba)Si_2O_2N_2:Eu~(2+)for white light LEDs. Chem Mater. 2009;21:316.
    15. Ning LX, Ji XW, Dong YY, Jin W, Huang YC, Pan ZF, et al. First-principles study of Ce-doped Y3Al_5O_(12)with Si-N incorporation:electronic structures and optical properties. J Mater Chem C. 2016;4(23):5214.
    16. Wang D, van Gunsteren WF, Chai Z. Recent advances in computational actinoid chemistry. Chem Soc Rev. 2012;41(17):5836.
    17. Munoz G, De La Cruz C, Munoz A, Rubio J. High-temperature luminescence properties of Eu~(2+)-activated alkali halide phosphor materials. J Mater Sci Lett.1988;7(12):1310.
    18. Ivanovskikh K, Ogieglo J, Zych A, Ronda C, Meijerink A. Luminescence temperature quenching for Ce~(3+)and Pr~(3+)df emission in YAG and LuAG. ECS J Solid State Sci Technol. 2013;2(2):R3148.
    19. Dorenbos P. Thermal quenching of Eu~(2+)5d-4f luminescence in inorganic compounds. J Phys Condens Matter. 2005;17(50):8103.
    20. Zhu QQ, Wang L, Hirosaki N, Hao LY, Xu X, Xie RJ. Extra-broad band orangeemitting Ce~(3+)-doped Y3Si_5N_9O phosphor for solid-state lighting:electronic,crystal structures and luminescence properties. Chem Mater. 2016;28(13):4829.
    21. Ueda J, Dorenbos P, Bos AJJ, Meijerink A, Tanabe S. Insight into the thermal quenching mechanism for Y3Al_5O_(12):Ce~(3+)through thermoluminescence excitation spectroscopy. J Phys Chem C. 2015;119(44):25003.
    22. Cui DP, Song Z, Xia ZG, Liu QL. Luminescence tuning, thermal quenching, and electronic structure of narrow-band red-emitting nitride phosphors. Inorg Chem. 2017;56(19):11837.
    23. He LZ, Song Z, Jia X, Xia ZG, Liu QL Control of luminescence in Eu~(2+)-doped orthosilicate-orthophosphate phosphors by chainlike polyhedra and electronic structures. Inorg Chem. 2018;57(2):609.
    24. Song Z, Wang ZZ, He LZ, Zhang RJ, Liu XL, Xia ZG, et al. After-glow, luminescent thermal quenching, and energy band structure of Ce-doped yttrium aluminum-gallium garnets. J Lumin. 2017;192:1278.
    25. Van Uitert LG. An empirical relation fitting the position in energy of the lower d-band edge for Eu~(2+)or Ce~(3+)in various compounds. J Lumin. 1984;29(5-6):1.
    26. George NC, Birkel A, Brgoch J, Hong BC, Mikhailovsky AA, Page K, et al. Average and local structural origins of the optical properties of the nitride phosphor La_(3-x)Ce_xSi6N_(11)(0     27. Brgoch J, DenBaars SP, Seshadri R. Proxies from Ab Initio calculations for screening efficient Ce~(3+)phosphor hosts. J Phys Chem C. 2013;117(35):17955.
    28. Delhaes P. Polymorphism of carbon. Graphite and precursors(World of carbon). 1.2001:8.
    29. Ashcroft NW, Mermin ND. Solid state physics. New York:Cengage Learning.Inc.; 1976.
    30. Francisco E, Blanco MA, Sanjurjo G. Atomistic simulation of SrF_2 polymorphs.Phys Rev B. 2001;63(9).
    31. Francisco E, Recio J, Blanco M, Pendas AM, Costales A. Quantum-mechanical study of thermodynamic and bonding properties of MgF_2. J Phys Chem A.1998;102(9):1595.
    32. Huang CH, Chen TM, Liu WR, Chiu YC, Yeh YT, Jang SM. A single-phased emission-tunable phosphor Ca9Y(PO_4)7:Eu~(2+),Mn~(2+)with efficient energy transfer for white-light-emitting diodes. ACS Appl Mater Interfaces. 2010;2(1):259.
    33. Zhao JW, Wu Y, Liang YJ, Liu MY, Yang F, Xia ZG. A novel green-emitting phosphor Ca_(10)Na(PO_4)7:Eu~(2+)for near ultraviolet white light-emitting diodes.Opt Mater. 2013;35(9):1675.
    34. Volker B, Ronda C, Meijerink A. Temperature quenching of yellow Ce3+luminescence in YAG:Ce. Chem Mater. 2009;2009(21):2077.
    35. Ci ZP, Que MD, Shi YR, Zhu G, Wang YH. Enhanced photoluminescence and thermal properties of size mismatch in Sr_(2.97-x-y)Eu_(0.03)MgxBaySiO_5 for highpower white light-emitting diodes. Inorg Chem. 2014;53(4):2195.
    36. TOPAS V. 2:general profile and structure analysis software for powder diffraction data-User's Manual. Karlsruhe, Germany:Bruker AXS; 2008. There is no corresponding record for this reference. 2002.
    37. Chen WT, Sheu HS, Liu RS, Attfield JP. Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors. J Am Chem Soc. 2012;134(19):8022.
    38. Wang SS, Chen WT, Li Y, Wang J, Sheu HS, Liu RS. Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice. J Am Chem Soc. 2013;135(34):12504.
    39. Tsai YT, Chiang CY, Zhou W, Lee JF, Sheu HS, Liu RS. Structural ordering and charge variation induced by cation substitution in(Sr,Ca)AlSiN_3:Eu phosphor.J Am Chem Soc. 2015;137(28):8936.
    40. Lin CC, Tsai YT, Johnston HE, Fang MH, Yu F, Zhou W, et al. Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. J Am Chem Soc. 2017;139(34):11766.
    41. Rodriguez-Martinez LM, Paul Attfield J. Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys Rev B. 1996;54(22):R15622.
    42. He LZ, Song Z, Xiang QC, Xia ZG, Liu QL. Relationship between thermal quenching of Eu~(2+)luminescence and cation ordering in(Ba_1_xSr_x)_2SiO_4:Eu phosphors. J Lumin. 2016;180:163.
    43. Kim YH, Arunkumar P, Kim BY, Unithrattil S, Kim E, Moon SH, et al. A zerothermal-quenching phosphor. Nat Mater. 2017;16(5):543.
    44. Qiao JW, Ning LX, Molokeev MS, Chuang YC, Liu QL, Xia ZG. Eu~(2+)site preferences in the mixed cation K2BaCa(PO_4)_2 and thermally stable luminescence.J Am Chem Soc. 2018;140(30):9730.
    45. Zhang ML, Xia ZG, Liu QL. Thermally stable K_xCs_(1-x)AlSi_2O_6:Eu~(2+)phosphors and their photoluminescence tuning. J Mater Chem C. 2017;5(30):7489.
    46. Fan XT, Chen WB, Xin SY, Liu ZC, Zhou M, Yu X, et al. Achieving long-term zerothermal-quenching with the assistance of carriers from deep traps. J Mater Chem C. 2018;6(12):2978.
    47. Zhong J, Zhao W, Du F, Wen J, Zhuang W, Liu R, et al. Identifying the emission centers and probing the mechanism for highly efficient and thermally stable luminescence in the La3Si6N_(11):Ce~(3+)phosphor. J Phys Chem C. 2018;122(14):7849.
    48. Grasset F, Dorson F, Cordier S, Molard Y, Perrin C, Marie AM, et al. Water-in-oil microemulsion preparation and characterization of Cs_2[Mo_6X_(14)]@SiO_2 phosphor nanoparticles based on transition metal clusters(X=Cl, Br, and I). Adv Mater. 2008;20(1):143.
    49. Ryu JH, Won HS, Park Y-G, Kim SH, Song WY, Suzuki H, et al. Synthesis of Eu_xSi_(6-z)Al_zO_zN_(8-z)green phosphor and its luminescent properties. Appl Phys A.2008;95(3):747.
    50. Zhuang JQ, Xia ZG, Liu HK, Zhang ZP, Liao LB. The improvement of moisture resistance and thermal stability of Ca_3SiO_4Cl_2:Eu~(2+)phosphor coated with SiO2.Appl Surf Sci. 2011;257(9):4350.
    51. Liu HK, Xia ZG, Zhuang JQ, Zhang ZP, Liao LB. Surface treatment investigation and luminescence properties of SiO_2-coated Ca_2BO_3Cl:0.02Eu~(2+)phosphors via sol-gel process. J Phys Chem Solid. 2012;73(1):104.
    52. Lee HS, Yoo JW. Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability. Appl Surf Sci. 2011;257(20):8355.
    53. Zhu YL, Liang YJ, Liu SQ, Li HR, Chen JH, Lei W. Design of hierarchical composite silicate for full-color and high thermal stability phosphors. Chem Eng J.2018;345:327.
    54. Ogi T, Nandiyanto ABD, Okino K, Iskandar F, Wang WN, Tanabe E, et al. Towards better phosphor design:effect of SiO_2 nanoparticles on photoluminescence enhancement of YAG:Ce. ECS J Solid State Sci Technol. 2013;2(5):R91.
    55. Yeh CW, Chen WT, Liu RS, Hu SF, Sheu HS, Chen JM, et al. Origin of thermal degradation of Sr_(2-x)Si_5N_8:Eu_x phosphors in air for light-emitting diodes. JAm Chem Soc. 2012;134(34):14108.
    56. Wang CY, Xie RJ, Li F, Xu X. Thermal degradation of the green-emitting SrSi_2O_2N_2:Eu~(2+)phosphor for solid state lighting. J Mater Chem C. 2014;2(15):2735.
    57. Lin H, Wang B, Xu J, Zhang R, Chen H, Yu YL, et al. Phosphor-in-glass for highpowered remote-type white AC-LED. ACS Appl Mater Interfaces. 2014;6(23):21264.
    58. Park HK, Oh JH, Kang H, Zhang J, Do YR. Hybrid 2D photonic crystal-assisted Lu_3Al_5O_(12):Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index. ACS Appl Mater Interfaces.2015;7(8):4549.
    59. Chen H, Lin H, Xu J, Wang B, Lin ZB, Zhou JC, et al. Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs. J Mater Chem C.2015;3(31):8080.
    60. Feng SW, Qin HM, Wu GQ, Jiang HC, Zhao JJ, Liu YF, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application. J Eur Ceram Soc. 2017;37(10):3403.
    61. Lee YK, Lee JS, Heo J, Im WB, Chung WJ. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications. Opt Lett. 2012;37(15):3276.
    62. Huang J, Hu XL, Shen J, Wu D, Yin C, Xiang R, et al. Facile synthesis of a thermally stable Ce~(3+):Y_3Al_5O_(12)phosphor-in-glass for white LEDs. Cryst Eng Comm.2015;17(37):7079.
    63. Zhang R, Lin H, Yu YL, Chen DQ, Xu J, Wang YS. A new-generation color converter for high-power white LED:transparent Ce~(3+):YAG phosphor-in-glass.Laser Photon Rev. 2014;8(1):158.
    64. Zhang XY, Yu JB, Wang J, Zhu CB, Zhang JH, Zou R, et al. Facile preparation and ultrastable performance of single-component white-light-emitting phosphorin-glass used for high-power warm white LEDs. ACS Appl Mater Interfaces.2015;7(51):28122.
    65. Zhu QQ, Wang XJ, Wang L, Hirosaki N, Nishimura T, Tian ZF, et al.β-Sialon:Eu phosphor-in-glass:a robust green color converter for high power blue laser lighting. J Mater Chem C. 2015;3(41):10761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700