风雨共同作用特大型冷却塔表面风荷载与作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface Wind Load and Action Mechanism for Super Large Cooling Towers Under Simultaneous Actions of Wind-Rain
  • 作者:柯世堂 ; 余文林
  • 英文作者:KE Shitang;YU Wenlin;Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics;Jiangsu Power Design Institute Co.Ltd.,China Energy Engineering Group;
  • 关键词:超大型冷却塔 ; 风-雨双向耦合 ; 数值模拟 ; 风荷载特性 ; 作用机理
  • 英文关键词:super large cooling tower;;wind-rain bidirectional coupling;;numerical simulation;;wind load characteristics;;action mechanism
  • 中文刊名:TJDZ
  • 英文刊名:Journal of Tongji University(Natural Science)
  • 机构:南京航空航天大学土木工程系;中国能源建设集团江苏省电力设计院有限公司;
  • 出版日期:2019-03-01 14:51
  • 出版单位:同济大学学报(自然科学版)
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(51878351,U1733129,51761165022);; 江苏省优秀青年基金(BK20160083)
  • 语种:中文;
  • 页:TJDZ201902004
  • 页数:8
  • CN:02
  • ISSN:31-1267/N
  • 分类号:31-38
摘要
强风暴雨极端气候条件下,暴雨会直接影响塔筒表面气动力并改变脉动风的湍流特性,而传统研究大多仅关注风单向驱动雨对于结构表面的冲击力.为解决该问题,针对中国已建成的高为210.0 m的超大型冷却塔,首先基于计算流体动力学(computational fluid dynamics,CFD)手段采用连续相和离散相模型分别展开风、雨场的模拟计算.在此基础上,揭示风雨场雨滴运行速度和轨迹的作用机理,并针对9种不同风速和降雨强度组合的塔筒内、外表面风雨荷载,雨压以及等效压力系数等展开定性和定量的对比分析.提出的超大型冷却塔风雨等效内、外压系数可以很好地预测此类极端条件下的表面荷载取值.
        Under extreme weather conditions with strong wind and rainstorm, the rainstorm will directly affect the aerodynamic force on the cooling tower surface, and change the turbulent characteristics of fluctuating wind. However, most traditional researches have only paid attention to the impact force characteristics of wind driven rain on structural surface. In order to solve this problem, aiming at the 210 m world tallest cooling tower in China, the wind field and rain field are simulated respectively by using the continuous model and the discrete phase model based on the computational fluid dynamics(CFD) method, based on which, the action mechanism of the moving speed and trajectory of rain drops in the wind and rain fields are revealed. Besides, the qualitative and quantitative analysis of wind loads, rain loads, rain-induced pressure, and equivalent pressure coefficient of 9 different combinations of wind speed and rain intensity are conducted. The surface loads of cooling tower under such extreme conditions can be well predicted based on the equivalent pressure coefficient proposed in this paper.
引文
[1] 柯世堂, 余文林. 高度200 m特大型冷却塔二维风振系数取值方法及分布规律研究[J] .建筑结构学报, 2017, 38(10): 78. KE Shitang, YU Wenlin. Research for value obtained methods and distribution of two-dimensional wind vibration coefficient of super large cooling towers with 200m height level[J]. Journal of Building Structures, 2017, 38(10): 78.
    [2] 赵林, 展艳艳, 陈旭, 等. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65. ZHAO Lin, ZHAN Yanyan, CHEN Xu, et al. Wind-induced interference criterion for cooling tower group towers based on envelope index of reinforcement ratio[J]. Engineering Mechanics, 2018, 35(5): 65.
    [3] ZHANG J F, GE Y J, ZHAO L. Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell[J]. Wind & Structures: An International Journal, 2013, 16(6): 579.
    [4] CHEN X, ZHAO L, CAO S, et al. Extreme wind loads on super-large cooling towers[J]. Journal of the International Association for Shell & Spatial Structures, 2016, 57(1): 49.
    [5] NIEMANN H J, KOPPER H D. Influence of adjacent buildings on wind effects on cooling towers[J]. Engineering Structures, 1998, 20(10): 874.
    [6] KE S T, GE Y J. The influence of self-excited forces on wind loads and wind effects for super-large cooling towers[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 132(33): 125.
    [7] 中华人民共和国住房和城乡建设部. 工业循环水冷却设计规范: GB/T50102—2014[S]. 北京: 中国计划出版社, 2014. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Industrial circulating water cooling design specification: GB/T50102—2014[S]. Beijing: China Planning Press, 2014.
    [8] VGB PowerTech. VGB-guideline: structural design of cooling tower-technical guideline for the structural design, computation and execution of cooling towers: VGB-R610Ue[S]. Essen: BTR Bautechnik Bei Kuhlturmen, 2005.
    [9] 沈国辉, 张陈胜, 孙炳楠,等. 大型双曲冷却塔内表面风荷载的数值模拟[J]. 哈尔滨工业大学学报, 2011, 43(4): 104. SHEN Guohui, ZHANG Chensheng, SUN Bingnan, et al. Numerical simulation of wind load on inner surface of large hyperbolic cooling tower[J]. Journal of Haerbin Institute of Technology, 2011, 43(4): 104.
    [10] 邹云峰, 牛华伟, 陈政清. 特大型冷却塔单塔内表面风荷载三维效应及其设计取值[J]. 湖南大学学报(自然科学版), 2015, 32(1): 76. ZOU Yunfeng, NIU Huawei, CHEN Zhengqing. Three-dimensional effect of wind load on the single tower of the special large cooling tower, and its design value[J]. Journal of Hunan University (Natural Science), 2015, 32(1): 76.
    [11] PETTERSSON K, KRAJNOVIC S, KALAGASIDIS A S, et al. Simulating wind-driven rain on building facades using Eulerian multiphase with rain phase turbulence model[J]. Building and Environment, 2016, 106: 1.
    [12] 于淼. 低矮建筑风雨作用效应的数值与实测研究[D]. 杭州: 浙江大学, 2013. YU Miao. Numerical and practical research on wind and rain effects of low-rise buildings[D]. Hangzhou: Zhejiang University, 2013.
    [13] 孟超. 输电导线风雨致振机理的研究[D]. 北京: 华北电力大学, 2015. MENG Chao. Research on wind and rain induced vibration mechanism of transmission wires[D]. Beijing: North China Electric Power University, 2015.
    [14] FU X, LI H N. Effect of raindrop size distribution on rain load and its mechanism in analysis of transmission towers[J]. International Journal of Structural Stability and Dynamics, 2018, 18(9): 1.
    [15] 毕继红, 乔浩玥, 关健, 等. 带有纵向肋条斜拉索的风雨激振减振机理研究[J]. 工程力学, 2018, 35(4): 168. BI Jihong, QIAO Haoyue, GUAN Jian, et al. Research on wind-rain induced vibration damping mechanism with longitudinal rib cable[J]. Engineering Mechanics, 2018, 35(4): 168.
    [16] 王修勇, 蒋乾超, 孙洪鑫, 等. 斜拉桥拉索风雨激振参数联合概率分布模型[J]. 土木工程学报, 2017, 50(10): 69. WANG Xiuyong, JIANG Qianchao, SUN Hongxin, et al. Joint probability distribution model of wind-rain induced vibration parameters of cable-stayed bridge cables[J]. China Civil Engineering Journal, 2017, 50(10): 69.
    [17] DOUVI E, MARGARIS D. Aerodynamic performance investigation under the influence of heavy rain of a NACA 0012 airfoil for wind turbine applications[J]. International Review of Mechanical Engineering, 2012, 6(6): 1.
    [18] CASTORRINI A, CORSINI A, RISPOLI F, et al. Computational analysis of wind-turbine blade rain erosion[J]. Computers and Fluids, 2016, 141: 175.
    [19] ARASTOOPOUR H, COHAN A. CFD simulation of the effect of rain on the performance of horizontal wind turbines[J]. Aiche Journal, 2017, 63(12): 169.
    [20] MCFARQUHAR G M, LIST R. The raindrop mean free path and collision rate dependence on rainrate for three-peak equilibrium and Marshall-Palmer distributions[J]. Journal of the Atmospheric Sciences, 2010, 48(3): 1999.
    [21] 柯世堂, 杜凌云, 侯宪安. 考虑百叶窗透风率超大型冷却塔内吸力风振系数研究[J]. 建筑结构学报, 2018, 39(8): 36. KE Shitang, DU Lingyun, HOU Xian’an. Study on wind vibration coefficient of suction force in ultra-large cooling tower considering louver permeability[J]. Journal of Building Structures, 2018, 39(8): 36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700